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Overdamped stress relaxation in buckled rods
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We present a comprehensive theoretical analysis of the stress relaxation in a multiply but weakly buckled
incompressible rod in a viscous solvent. For the bulk, two interesting parameter regimes of generic self-similar
intermediate asymptotics are distinguished, which give rise to approximate and exact power-law solutions,
respectively. For the case of open boundary conditions the corresponding nontrivial boundary-layer scenarios
are derived by a multiple-scale perturbati@adiabatic” method. Our results compare well with—and provide
the theoretical explanation for—previous results from numerical simulations, and they suggest directions for
further fruitful numerical and experimental investigations.
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I. INTRODUCTION problems. A telling example is provided by the successful
application of scaling arguments based on deterministic dy-
Any child that has played with a ruler during a boring namics to ratioryaliz_e the nonequilibrium Iongif[udinal re-
school lesson has experienced the diverting physics of thePonse of a semiflexible polymgg—1(}. More precisely, we
paradigm of a mechanical instability: the sudden buckling oill consider here the deterministic overdamped relaxation
a slender rod under a compressive axial load of weight of the tension in an incompressible buckled rod as schemati-
surpassing the first critical Euler fordg This so called Eu- cally depicted in Fig. 1. Initially, the contour is strongly
ler buckling instability is not only a well-known example of wrinkled on short length scales, causing the end-to-end dis-
a simple mechanical system exhibiting nontrivial elastic be{anceR(t=0)<L to slightly deviate from the contour length
havior, historically it is also associated with the beginning ofL- It then evolves in time toward a completely straight final
bifurcation theory. Its thorough understanding can tempeptateR(t—c)=L by transferring contour length “stored” in
our intuition as to what should be expected or searched aftéhe high Euler modes to successively lower modes with
in more complicated situations involving elastic instabilities fewer and fewer nodes. The elastic energy stored in the com-
or bifurcations in general. Intriguingly, it has also proved topressed initial state is thereby dissipated to the solvent. The
be of major importance for the equilibrium thermodynamicathermal case already exhibits a very rich phenomenology
properties of stiff biopolymer$1,2], such as actin or col- (emergence of a characteristic wavelength, exact and ap-
lagen, which are largely responsible for the elastic propertieroximate power-law relaxation, helix formation, staircase
of biological tissue. Recently the dynamics of the Euler in-relaxation, only some of which has previously been ob-
stability has also gained considerable interest as one of thgerved in numerical simulatioi$1,12. These earlier studies
most elementary elastohydrodynamic probldi3is The lat-  also provided scaling arguments rationalizing some of the
ter are commonly encountered in the derivation of macroobservations on the basis of a mathematical description
scopic constitutive models for soft, viscoelastic materialsadapted to the simulation technique, which involves a com-
i.e., materials that show a mixed elastic and viscous behawressible rod. In contrast, our analysis starts from the math-
ior. For major examples of this important type of condensed
matter, ranging from polymer solutions and gels to biological
cells, the complicated dynamic response can indeed be attrib-
uted to the elastohydrodynamics of some low-dimensional
mesoscale structur¢d—6]. Thus the focus has shifted away e AN NANANNANNA
from the classical treatment of the Euler instability],
which is motivated by typical engineering problems such as

the stability of a mechanical beam under compressive loads, — NN N
to thermally undulated rods. A crucial difference between the _— TN
two situations is that usually only the first few Euler modes
matter in the former, whereg@nfinitely) many modes are | ... Rt—=o0)=L oo
excited in the latter.
, .In tTe presen,t contrlbu.tlon we are Interested in determin- FIG. 1. Atypical scenario of a deterministically relaxing buck-
istic (“athermal’) dynamics under circumstances WhereIed rod. Initially the rod is wrinkled on small wavelengths. In the

many mpdes contribute. Despite this restriction, our methodsoyrse of time undulations are pushed out at the free ends and the
and major results are also pertinent to certain “thermalypical wavelength of the undulations grows.
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ematical minimal modélfor the various phenomena of in- relaxation of the rod. The required adiabatic method of
terest outlined above, which is a contaus,t) parametrized slowly varying tension, which we develop in Sec. V B and in
by its arc lengths=0, ... L and subject to an energetic cost the Appendix, can be generalized to stochastic dynaftigis

L and thus provides a conceptional basis for a unifying descrip-
Ho[r(s)]sz dsr"()? (1) tion of tension propagat?on in slen_der rods_. The scenar_ios
2J)o established for the tension relaxation entail corresponding

) ) . power-law scenarios for a number of observables such as the
for bendm,n;:] that is proportlona_tl to the square of the localdissipated energy or the growth of the radius of gyration or
curvaturer”(s) (where we have introduced the shorthand no-gnq tg-end distance, which will be compared to simulations
tationr’=dr/gs). The local incompressibility of the contour \yhere available.
has to be imposed onto E() as an external rigid constraint  The remainder is organized as follows. In the next section,

r'(s)2=1, 2) we further sp.ecify the proplem and give some intuitive argu-

. _ . _ ments as to its mathematical structure and the expected dy-
which considerably complicates the calculations compared t@amics. For those readers who happen to be mainly inter-
classical polymer models with fluctuating contour lengthested in a qualitative overview of the rich deterministic
[13]. For finite temperatures, this model is generally knowngynamics of the Euler instability, we moreover give a com-
as the Kratky-Porod model or wormlike-chain model in theprehensive qualitative and phenomenological discussion of
polymer literature[13,14. However, as we said, here we the results. Section Il can also be read as an extensive intro-
focus on its deterministi¢zero-temperatupedynamics, ex-  duction to and outline of the detailed calculations and results

clusively. The contour is embedded into a highly viscousreported in the subsequent sections and in the Appendix.
solvent of viscosityn, and in the low-Reynolds-number and

free-draining limit one approximates the viscous frict{per
length of a slender rod of thicknesa<L by two coeffi-

cients, =2¢~4mn/In(L/a) for transverse and longitudinal  The classical analysi] of the statics of beam buckling
motion relative to the solvent, respectivg3]. determines the onset of buckling from a linear stability
We emphasize that a crucial ingredient implicit in relatedanalysis. More precisely, after decomposing the rod contour
earlier studies is the weakly-bending-rod limit. It asserts thafnto discrete Fourier modes with amplitudas it yields the
the local slope of the contour is small. This condition has togssociated critical forcek,= k(7n/L)? (here for the case of
be met for a large negative line tensigoressurg f>f, 10 pinged endsnecessary to excite these modes. If only the
build up along the contougFormally f plays the role of a gden is excited the corresponding bending energy as a
Lagrange multiplier enforcing the incompressibility con- fynction of the relative compressioa follow as Ho(e)
straint ontoH,.) Moreover, the condition of weak bending =f,Le in the weakly bending limit. One may hope that also
naturally provides a small parameter the dynamicsof the instability should be accessible to an
e=1-Rt=0)/L<1, (3) essentially linear calculation for a weakly bending rod, al-
though the problem outlined above is intrinsically nonlinear.
the fraction of the contour length initially “stored” in the e will show below that this is indeed the case as long as the
contour undulations. Technically, the existence of this smalfension along the rod is sufficiently uniform. Then the dy-
parameter is vital for the analytical approach to the problempamics can be understood as arising from a linear superpo-
It_enables us fto establish two independent mechanisms bgjtion of relaxing eigenmodes that are owgjpbally coupled
hind the ubiquitou$11,12 power-law temporal decay of the py the incompressibility constraint E¢R). It restrains expo-
tension nential growth of the unstable modes by selecting the inter-
f(t) o< 722, (4 mediate asymptotic power-law relaxation &4) of the ten-
sion f(t).
We will show that Eq.(4) generically emerges as a conse-  Although our mathematical analysis applies more gener-
quence of two types of initial conditioriseferred to as type gajly, it is instructive to take the example of a free rod with a
I 'and type I). It will turn out that in the first case the struc- gspecial initial condition as a starting point; namely a contour
tural relaxation proceeds hand in hand with tension relaxihat js wrinkled at short scales with wrinkles that are statis-
ation, whereas in the second case it occurs essentially stresfeally uniform along the whole contour. Obviously the re-
free, after the tension has already relaxed. In both cases, Wgxation at the free ends will not be the same as in the bulk,
will also derive the associated growth laws for the boundary,yt for the time being we concentrate on the bulk behavior.
layers near free ends and analyze their contribution to thgake an arbitrarily chosen short segment of leridtr away
from the rod ends. To fully relax its bending energy it would
Iin contrast to related studies on two-dimensional membrigles ave to release its stored lengtfl ~ el and thus to expand.
where a finite “backbone” compressibility is in fact a necessary!© this end, the sections of the rod to both of its sides would
ingredient, it does not play a vital role for the various phenomena oftave to be pushed out. Since these were assumed to be very
interest in the present contribution. However, we note that in thdong and almost straight, so that their displacement is subject
simulation studies in Ref$§11,17, it provided a convenient means t0 substantial viscous friction from the embedding fluid, this
for the preparation of rods in an excited state giving rise to thes Virtually impossible for a considerable period of time.
“cascading scenario” discussed in Sec. IV C. (Note that the assumption of an almost straight contour is

Il. QUALITATIVE DISCUSSION
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A more thorough analysis of the initial conditions giving
excited state rise to power-law relaxation in the bulk will be performed in

Secs. IV D and IV E. The key observation is that apart from
w the just mentioned cascading in mode space, there is another

mechanism leading to similarity solutiorexactly obeying

ground state Eqg. (4). Contrary to the cascading solutions, where Ei.
[ = = == === == e = can be understood as the immediate consequence of the ap-
r=(1- g%l pearance of a time-dependent characteristic wavelength
FIG. 2. Relaxation in the bulk. The situation is essentially the QX(t) o t4 (6)
same as for a longitudinally confined rod. The pressreexerted
onto the confining walls exhibits the power-law decay . that visibly dominates the contour undulations, no palpable

dominant length scaléand hence no generic staircase relax-

crucial at this poin). The chosen initial condition therefore ation) develops for this second class of solutions. In fact,
entails that a uniform axial pressufemuch larger than the hardlly any cor]formatlonal relaxation is not|.cea_ble durlng
critical pressuref, for the ground state builds up along the t€nsion relaxation, and the structural dynamics is predomi-
contour. For a first analysis we may therefore imagine thé@ntly stress-free in this case. Dynamic scaling simply arises
chosen bulk section of the rod to be caged between tw@S & consequence of teelf-affine geometryf the initial
immobile boundaries of distanae=(1-%! that preserves _cc_>r_1d|t|ons chara(_:terlzed by a p/ower-_law distribution of the
its total stored length initial mode amplitudes,,(0) = n~#2~1 with a “roughness ex-
o ponent” 1< 8<3. Among these is the particularly interest-

o'l=1-r=const, (5 ing “thermally” undulated contouf8=2, the dynamics still
jsupposed to be athermaBy restricting the discussion to
power-law initial conditions with a mode cutoff to respect
Eq. (3), a precise classification of initial conditions is pos-

as depicted in Fig. 2 and analyzed in Sec. IV. The initial
pressuref(t=0) within the sectionwhich is the negative of

the force exerted onto the boundayiean however still relax - S - : :
sible. Power-law initial conditions witg<<1 are then said to

by transferring stored length from high modes to low modesb ¢ L(th ) X y dina” soluti d
For the sake of the argument, we imagine the initial confor- he 0 ty_pﬁ 1(t ey3g|\;e rlse”tohcasqa ing” solutiopsand
mation to have essentially the form of a sine function with those with 1< <3 of type Il (they give rise to exact simi-

very small wavelength. In other words, the mode amplituded2rity solutions. The case3>3 can be dismissed, because it
a,(0) will be peaked around somés1 in mode space, say. amounts to situations where essentially all stored length is
all a,_, are extremely small and adi,_ vanish identic:'sllly " initially contained in the lowest mode. The discussion in

<N >N . H H
Then the initial pressurdy is much higher than the final gecs.l\I/VECﬂ?ntd ll\l/ D Wl_l(lge_v?(_ntluallydall_ow us to (.:Ot;}c'uqe n
(ground statgpressuref. It will therefore relax by transfer- EC. at afigeneric initial conditions invariably give
ring the conserved stored lengdfl from the Nth mode to rise to the same universal power-law relaxation @y of the

successively lower modes, thereby dissipating stored elast{(?rce but with variable degree of localization in mode space,

. s summarized in Fig. 7 below.
energy to the solvent. Since lower modes have longer rela@ . . . .
ation times they evolve more slowly, and the transfer of While the discussion so far holds anywhere in the bulk of

stored length happens viacascade in mode spagevolving the rod, where the longitudinal expansion can essentially be

all intermediate modes. It turns out that the initial Iocaliza—.neglect(':'d on the appropriate logarithmic time scale, we will

tion of stored length and bending energy in mode space il the remainder also address the slightly different situation
not lost. The numerical solution in Sec. IV C will explicitly hear the free endSec. V). Surprisingly, it can be analyzed

confirm that under such conditions the transfer actually chlong t,?e Sf’?‘met"”fs 3}5 the bll(Jllk By vcllr_tue I(')f .";‘ I_err;]gth sc_ale
curs in a discontinuous jump mode leading to a staircasgoparation innate to the weaxly bending limit. The major

relaxation of the line tensiof(t) and the corresponding con- variation of the tension, namely, ”OF“ Its .bUIk value to zero
finement force around the power law Ee). Further, we at the open boundaries, occurs within(tame-dependent

will demonstrate analytically that the localization in mode boundary layenf lengthA(t) that is at any time much larger

o 1 .
space emerges asymptotically for certain initial conditionsthan the _characterlst|c Iength_ scaje (t.) of the dynar_mcal_ly .
(notably those to be classified as type | bejowve will most active contour undulations. This fortunate situation is

discuss in detail how the global coupling of the modes Viaschematically depicted in Fig. 9 below. It allows the deriva-

the constraint for the end-to-end distamcselects up to loga- tipn of clpsed equations for tlﬂ(s'moot'b coarsejgrai_ned ten-
rithmic corrections the power-law decay Hé) as interme- sion profile by means of an adiabatic approximation t_hat in-
diate asymptotics. It will be shown that the localization in fegrates out the contingent short-wavelength fluctuations up

mode space consecutively sharpens with time, thereby estab-

lishing the above mentioned staircase relaxation as a generi@ajthough our discussion is qualitatively valid also for initial con-
long-time feature for those initial conditions. The mechanismgitions that deviate from ideal power-law distributions, we want to
behind the localization in mode space will be seen to bealiscard as “nongeneric” those initial conditions where one either
formally analogous to the onset of phase separation after starts essentially in the ground st&fg=>3) or has multiple peaks,
deep quench, i.e., to the early stages of spinodal decomposiscillations, etc. in the mode spectrum. This attitude is commonly
tion [16,17. adopted in related studi¢8,9].
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to a coarse-graining length scdl@) intermediate between Tl

Q (t) and\(t). The underlying idea goes back to RgS].

As an aside, we point out a subtle technical difference be- ri,2 s—7|
tween the bulk and the boundary-layer problem, here. While

the former is accessible to an ordingrggulay perturbative 0 L

approach, the adiabatic approach to the latter amounts to a

multiple-scale perturbation scheme. The additional effort is FIG. 3. The parameterization of the contags)=(r , ,s-r)" by
rewarded by the possibility to generalize the approach téransverse and longitudinal displacement variablesand ry, re-
arbitrary situations that exhibit a slo@ompared td) “sys- ~ Spectively. Note that the displacements vanish for the straight
tematic” variation of the line tension and stored length alongFontour.

the contour. The corresponding formalism is developed in

Sec. VB and the Appendix and enables us to derive the R (t) « f(t). (8
central Eq(65). It can be interpreted as a continuity equation
for the (coarse-grainedlocal stored length, which general-
izes Eq.(5) to situations with spatially varying tensidis).
The application to the situation near the free ends allows u
to infer a nontrivial dynamic scaling law for the boundary
layer. Its widthX is found to grow according to

ThusRg, represents a suitable observable to directly monitor
the decay law Eq(4) for the tensionf(t). This said,Rg
gbviously should not be regarded as a genuine measure of
the conformational dynamics. The latter can instead be ac-
cessed via measuring the changf®(7) of the longitudinal
component of the end-to-end distance. Because of its sensi-

(1) o 2, (7)  tivity to the boundary-layer width, it portrays the richer
conformational dynamics in its power-law growth
The exponents characterizing this growth depends on the SR (1) 1. 9)

degree of localization of the stored length in mode space, so

that one again has to distinguish between type | and type IFor type | initial conditions,sR; is just a(small) constant
initial conditions. For type | initial conditions we find  fraction of the boundary layer width, i.edR,x\*Q™%, so
=1/4; hence the boundary-layer width is proportional tothaty=1/4. On theother hand, for type Il initial conditions,
(though numerically much larger thethe wavelength of the Q™% \, and$R, all constitute different dynamic length scales,
dominant mode, i.e\ = QL. It thus does not represent a new and we find a crossover from=(1+8)/8=6+(8-1)/4 for
characteristic dynamic length scale itself. As we noticed forshort times toy=(8-1)/4 for long times.

the bulk, tension propagation and contour relaxation proceed The above qualitative discussion has hopefully convinced
in parallel. Asymptotically the rod contour can be decom-the reader that the dynamics of the mechanical Euler buck-
posed into a bulk region with homogeneous line tensioning instability exhibits a rich and interesting phenomenology
f(s)=const and two virtually stretched end sections wherehat deserves a more detailed mathematical analysis. This is
the tension has relaxed to the linear profils) = »s charac-  what the following sections intend to provide.

teristic of a rigid rod subject to a viscous friction force.

These predictions compare well with the available numerical

simulations[12]. In contrast, for type Il initial conditions, 1. EQUATIONS OF MOTION

which have not yet been studied in simulation$;(3
-B)/8 is predicted to depend on the roughness expopgent
so that\ provides a new(B-dependentcharacteristic dy-
namic length scale in addition 1. The vanishing o® for

As motivated in the Introduction, the axial incompress-
ibility can lead to a large negative tensigpressurg in a
relaxing rod. This crucial feature appears only for almost
straight rods or straight rod sections, for which the fracton

type Il initial conditions on the value of the exponghivas

. O .
previously noticed in a different contej®,9]. As an impor- parametrize the contour by=(r , ,s=r))", wherer ,(s) is the

two-dimensional transverse displacement vector at arclength

tant special case, we obtain the expongatl/8 for "ther- s andr(s)—r;(0) is the contour length stored in undulations
mal” initial conditions, which coincides with the correspond- > "'l I . 9
within the rod sectior(0,s).

ing exponent for the nonequilibrium thermodynamic tension ) ) .
g &xp 9 y The functionr;(s,t) can be interpreted as the fraction of

propagation known from linear response calculatif5)48). ; )
The divergence of tension decapr propagation and the contour length that isocally stored in the transverse

conformational relaxation for type Il initial conditions raises Undulations. As it turns out to be the density of a locally
the question of how under these circumstances tensiofPnserved quantity it will have central importance in our
propagation can be observed in experiments or simulation@nalysis. For convenience of notation we reserve the variable

In Sec. VI we establish that the growth velocity of the lon- €(St) for it,

gitudinal componentRg, of the radius of gyration of a — 1
weakly bending rod is generally proportional to the tension e =ry(s. (10
f(t) in the “bulk” of the polymer, The spatial average
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(1) <L confined between two immobile walls, as illustrated in

Fig. 2. The weakly bending rod section is supposed to be
relateso to the small parameter, defined in Eq(3). The initially perturbed by small wrinkles of length much smaller
limit e— 0 with o(s,0)/ € fixed is called theveakly bending than! (excited statg Owing to the undulations, the end-to-
limit because it guarantees an almost straight contour, ~ ©nd distance is smaller thari, by an amounp(t)l, where

o(s,t) =O(e) < 1 (weakly bending limit. (12 ry() —ry(0)

|
o =1 f dso(s =012 17
0

L ds relaxing rod is the relaxation of a rod section of lendith
f fQ(S,0)=6

0

Equation(12) forms the basis of the perturbation theory de-
veloped below.

The inextensibility of the rod Eq.2) couples transverse
and longitudinal coordinates. Resolving it igrand expand-
ing the square root, it reads

is the spatial average of the stored length dengits;t) in-
troduced in Eq(10). With the help of Eq(13), we can ex-
presso(t) in terms of the transverse displacements,

1
p(st)=r/ = %r Z+o(rh). (13) el = EL dsr%(s,t) + O(e). (18)
From Eq.(12), r', is of orderO(e*?) and the terms neglected By exerting a compressing fordét) on the rod ends, the
in Eq. (13) are of orderO(e?). walls keep the rod section from expanding and the total
We now turn to the derivation of the equations of motionstored lengtho(t)l remains constant,
in terms ofr | andry. In the case of low Reynolds humbers o _
the dynamics is detHermined by the balance of elastic, driving, Aet) =e(® -¢"=0, (19)
and friction forces. The elastic force derives from wherep®=p(0)=0(e) is the contour length initially stored in
1(t the rod section. Our question is, how does such an “excited”
H=Hoy~— —f dsfr'? (14 rod relax to the ground state, in which the contour has only
2Jo one buckle of wavelength(as depicted in Fig. 2
In the present section we will apply regular perturbation
theory to address this problem, i.e., all derivations are under-
stood to holdo leading order ine. This allows us to neglect
the spatial dependence of the tension. The longitudinal equa-

via functional differentiation19]. The Lagrange multiplier
function f(s,t) is necessary to preserve the arclength con
straint Eq.(2). It can be interpreted as(aegative local line

tension. . . . .
For elongated slender bodies like thin rods or stiff poly-t'on of motion Eq.(15b) together with Eq(12) imply that
mers, it is well justified to assume a local anisotropic friction f' =0(e). (20)

force (free-draining limiy. The anisotropy is due to the fact ] o . .
that the friction coefficient , =2¢, (per unit length of a stiff 1 herefore spatial variations of the tension are small in the
rod moving perpendicular to its long axis is twice as large adimit e<1 and the transverse equation of motion Eija) is
that for longitudinal motion. It can be taken into account byt0 leading ordeO(€'?) given by
decomposing the contour velocityr into its components Coar = — k" = )" 21)
parallel and perpendicular to the local tangehf20]. The Lo + L
force balance can then be written in the foftir 'r'+¢, (1 where merely the spatial average
=r'r’)]-or ==8H/ r. To ordere, it takes the form 1
{oor =—wr']" = (fr]) (15a f(t) = Tfo dsf(s,t) (22

Giory = (&L =gr' dr  =—«wr]" +f = (fr[)’. (15b)  of the forcef(s,t) enters. The longitudinal force that the
walls exert on the segment equdlsip to higher-order cor-
rections. Although Eq21) is linear for a given force history,
the global constraint of fixed end-to-end distance BE®)
makes the tension a functional of the contoyrs,t). The
resulting problem comprised by Eq4.9) and(21) is there-
fore still highly nonlinear and in general not analytically
tractable. Progress can be made, however, for generic cases

The local anisotropy of the friction generates additional
terms of orderO(e¥?) that are neglected here. For a freely
relaxing rod with given initial conditions, the equations of
motion Eqs(15) have to be solved while respecting the local
constraint Eq(13) and the boundary conditions of zero ten-
sion, torque, and force at the ends,

flor=r"loL=r"loL=0. (16)  (see footnote R as will be shown in the following subsec-
tions. We will also present exact numerical solutions in order
IV. RELAXATION OF A CONFINED WEAKLY to illustrate the results.
BENDING ROD
A. The leading order in e B. Amplification factor

In the course of our qualitative discussion in Sec. Il we We analyze the problem in two steps. For a given force
showed that the key problem for understanding the bulk of duistory f(t) Eq. (21) is linear inr . Therefore, we can deter-
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mine the stored length as a function of the tension via Eq. 50 = (@) ]
(18). The secondin general nontrivigltask is then to invert
this relation and to determine the correct force history that  A(g) x=2
obeys Eq(19), i.e., keeps the end-to-end distamasonstant.
We decompose the contour of the “caged” section of 0 I 0
lengthl (Fig. 2) into sine functions, 0 1 v2 9/Q Y 1 V2 ¢/Q
ro(st)= \%E ay(t)sin(a,s), (23 FIG. 4. The sensitive dependenceAdfy, 7), given by Eq(31b),
n on the parametex=Q* For =2 the amplification factor takes

. . the form of a pronounced pe&k) whereas forw=0.15 it resembles
whereq,=n/l is the wave number corresponding to tite step functiorr)(b) pealy
S .

mode, and for definiteness hinged ends have been assume
for the boundary conditiongThe same boundary conditions 5
have been used in molecular dynamics simulatifts.) ¢=09,D=29,(rQ%). (30)
Then, from Eq(18) the stored length can be written as Note that the wave numbe®(r) that has grown most
1 strongly up to timer depends on the force histogy(7< 7).
el = 52 qrai =2 o4l (24)  With this definition, Eq(27) is rewritten as
n n

A(g,7) = exd 2797(2Q° - 31
The element®,(t)| of the last sum can be interpreted as the @7 H2ra(2Q - a)] (313
contour length stored in mode at timet. We obtain a dy- —ext 2a(a/0) 2 — (9/O)? 31b
namical equation fop,(t) by first inserting the Fourier de- _ d 'a(q Q.) [2-(@Q7], (31D
composition Eq(23) into Eq.(21) and then multiplying the Where we introduced the dimensionless parameter
resulting equation for the mode amplitudesamﬁ/(ZI): a(7) = 7Q%(n). (32)

3,0n= 2~ A+ e(Da5]en. (25  The amplification factorA(q,r) describes how the stored

Here we introduced a rescaled tensipre f/« and timer length is rearranged for_a given force history. In general
=xt/¢,, which have units oflength2 and (length?, re- ~ Wave numbers Iargeryiha\rﬁQ are d_a_mpeojA< 1) and wave
spectively. Now, all variables of our problem represent pow-"umbers smaller than2Q are amplified A>1). Further, the
ers of lengths. The dispersion relation E@5) exhibits a ~ amplification factor depends very sensitively on the param-
stable and an unstable band of modes, separated by the wa&tr « defined in Eq.(32). For «>1 the functionA(q,7)
number./¢(7). Modes with larger wave numbers shrink ex- develops a strong peak arougetQ with a heighte’* and a
ponentially, whereas the others grow exponentially as a corfelative widthAQ/Q of abou

sequence of the competition of thestoring bending force — (o1

(dominating at large wave numbegrand thedriving force AQIQ= (2N, (33
(dominating at small wave numberdhis is formally analo- as shown in Fig. @&). Hence, fora>1 it can be idealized as
gous to spinodal decomposition. In this context &%) with €“AQ4s(g-Q), whereas forr< 1, which is illustrated in Fig.

x measuring the surface tension ahdhe curvature of the 4(b), the function resembles more the step functaf/2Q
local free energy at the central maximum is known as the-q).

Cahn-HiII_ar_d.equatiomlle]. . . We now turn to the second step of determining the force
After dividing both sides by, Eq.(25) can immediately history ¢(7) that makes the dynamics compatible with the
be integrated: constraint of fixed end-to-end distance EJ9). This is
o(7) = QﬂA(qn,T), (26) achieved by inserting Eq&24), (26), and(313 into Eq.(19),
with the initial valuese?, and an “amplification factor” 0=4e(7 (343
A(q,7) = exd 20%(P(7) - ¢*7)]. (27) =2 o[AGy,7) ~ 1] (34b)
n

By ® we denote the time integral over the tension

— 0 2) 2 2
T = exp27g3[2 -tk -1). 34¢
() = J Fro(?). 28 3 oj(expmi{2Qn - g -1 (349
0
) For a given timer Eq. (34¢) is an implicit equation for the
The structure of the functioA(q,t) becomes more transpar- characteristic wave numb€(7) which by its definition Eq.

ent upon introducing the characteristic wave numQer)  (29) is related tob(7), the time integral over the tension. The
corresponding to the position of its maximum,

o o D(7) %We choseAQ somewhat arbitrarily to be twice the standard de-
Q(n) = ?' (29 viation of the peakAQ™! can be interpreted as a coherence length
over which the contour of the rod can be considered to be a pure
which is related top(7) by sinusoidal.
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on(7) larger than(v2Q) ™! in time . Due to the form of the ampli-
fication function(see Fig. 4 the mode amplitudes with wave
number close t®@(7) show the largest increase up to time
In the present case this results in the formation of a pro-
nounced peak aroun@(r;) although the initial excitation
was “flat” up to the cutoff.

It will turn out in the next section that a large peak in the
amplification factor implies power-law evolution of the char-

T1

i Agl_ acteristic wave numbe®(7) and thus of the tensiog(7).
T | Whether or not the mode spectrum develops a pronounced
} AQ(73) Elﬁkﬂ-‘l‘wl&‘\ peak as in the above example depends on the initial condi-
P 1 . . . -

: ¥ tions. Figure 5 suggests that a strong peak is present at time
Qrs) V3Q() - q 73, because the dark gray areag., —~Ag_ are much larger

then the light gray area. In other words, the stored length will

FIG. 5. The fractiono(7)=0%A(qy, 7) of contour length stored b€ strongly localized aroun@(7) at time 7, if the relaxed
in mode n versus the corresponding wave numiigenar/l for  stored lengthlAg_|=Ag, is much larger than the contour
three successive timeg> r,> 7, and the particular initial condi- length that was initially stored in the interval of widthQ
tion p2_,=const ande?_=0. The location of the maximur@(r)  around the wave numb&). To estimate the former, we first
of A(q,7) has been obtained upon solving the implicit equationnote thatA(q, 7) decays exponentially to zero fqe>\2Q, so
(340) numerically. As explained in the main text the dark shadedthat we simply replace it by zero in E¢B5). Then, because
areasdo_ andAg, can be interpreted as stored length that has beeany modes contribute to the remaining sum, we take the

destroyed and generated during the relaxation, respectively. Theontinuum limit in mode space according to
global constraint of fixed stored length requires their sum to vanish

N . 0
identically, Eq.(37). Qo
y EaED e’@=a =— (38)
remainder of Sec. IV is devoted to the analysis of the timeSO that we obtain
dependence of the solutiolgX 7) of Eq. (34¢).
First of all, we note that numerically it is straightforward * 0
to solve the implicit equation for any initial conditiop?. Ag-=- EQdQQ (). (39

This allows us to illustrate a key feature of the relaxation
process right away, namely, the continuous transfer of store@he amount of contour length initially stored arou@dcan
length from small to large scales. Figure 5 shows the modebe estimated by the initial amplitude @ 0°(Q), multiplied
number-dependent fraction of stored lengif(7) at three by the width of the peakAQ. Upon comparingo®(Q)AQ
successive times; < 7,< 3 for the initial conditione®_,,  with Ap_ we obtain the criterion

=% N=const ancp2>N:0. For this particular choice of ini- "

tial conditionsg,(7) can up to a constant prefactor be iden- J %) > o° - i

tified with A(q,, 7). The dark gray area represents the differ- 20 dag(@) > eAQAQ - peakinAlq,7),  (40)

ence between the stored lengths at times 0 and timié has . . .
two natural subdivisiond g, >0 andAg_<0, adding up to té)(;j)emde whether a peak is expected for a given value of

by virt f th traint Eq34b). F Iy, de- . " . .
zero by virtue of the constraint E¢34b). Formally, we de Assuming condition Eq40) to hold, we will show in the

fine by ) : .
next section howapproximatepower-law relaxation of the
“ 0 dominant wave numbeiQ(7) and of the tensione(7)
Ao (1= 2 ofA(G, D -1]<0, (39 emerges. In Sec. IV D we will see thexactpower-law so-
n=Ne lutions of Eq. (340 moreover arise from self-affine initial
with N, being the smallesh with g,>2Q(7), the stored conditionse®(q) g™ with 1< B<3. It will turn out that a
length that has been “destroyed” up to timeNote that each complete classification of all generisee footnote Prelax-
element of the sum Eq35) is negative. SimilarlyAg.(7) ation scenarios in the bulk can be given in terms of the ex-
represents the stored length that has been “generated” in tf@nents, characterizing the roughness of the initial contour.

modes with wave numbers belov2Q(7), i.e., we define C. Cascading of stored length

N1
< Provided that the condition E¢40) is satisfied at a time
— 0
Agu(n) = % nlA(Gn ) ~ 1] > 0. (36 |arger than some suitable short transient time, the relaxation
" has accumulated most of the stored lengthin the peak
Since the total change in stored lendtp must vanish, aroundQ(7). Undulations of wavelengt)™* visibly domi-
Ao(7) = Ap.(7) +Ao_(7) =0, 37) nate the rod contour. Furthermore, the sum &%) repre-

sentingAg, is dominated by the modes arou@dr), which
we can imagine the relaxation process asasferof stored  simplifies its evaluation significantly. Yet, one still has to
length |Ag_(7)| from scales smaller tha(/2Q)™* to scales discriminate two limiting cases.
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1. Intermediate asymptotics

The peak of the amplification factor covers many modes,

i.e., the widthAQ of the amplification peak, as defined in Eq.
(33), is much larger than the mode spacingl, or

Ql> 2mVa. (41)

Then many modes contribute to bothp_ andAg, and the
corresponding sums Eq®5) and(36) can be converted into
integrals, as has already been done in 89) for Ap_ to
obtain the criterion Eq(40). The continuum limit forAg,
reads

J ’
0

Since by assumption, E¢40), the integrand in Eqi42) has

Q
Ap, =~ dae®(a){exd 279%(2Q* - q?)]1 - 1}. (42)

a pronounced maximum, it can be evaluated by a saddl

point approximation, replacing it effectively by the area
AQ exp(2a) under the amplification peak(q) multiplied by

0%Q),
Ag, = 0%QAQ exp2a). (43)
The conservation of the stored length, Eg[7), implies

0=A¢(7) = e°A(QAQ exp2a) - f _ dae%q). (44)
\2Q

Since the first term on the right-hand side of E44) de-
pends exponentially on the parameterthe latter is slaved
to be time independent up to logarithmic corrections,

(45)

Recalling the definition ofy, Eqgs.(32), and using Eq(30),
one finds for the tension

¢(1) =Q(n)? o 712, (46)

which proves Eqs(4) and(6) up to logarithmic corrections
for the intermediate asymptotics emerging once @§) is

a=const+O(In 7).

satisfied. While the peak position is thus migrating to lower

wave numbers according to the power 1&(r) =7 Y4 its
width shrinks accordingly,AQx 74 Consequently, the
number of discrete modes under the amplification peak d
creases.

2. Ultimate staircase relaxation

When AQ eventually becomes smaller than the mode
spacingm/l, the contour of the rod starts to be dominated by

the discrete wave numbey,« closest toQ(7). Thus it is no
longer legitimate to approximat®p, by an integral. On the
contrary, in the limit

’f_
Ql<2ma

(47)

the sum in Eq(36) should be replaced by the single domi-
nant element corresponding to the indgx

Ag, = 0% exg270,+(2Q% - 2] (48)

e_
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log (w/¢1)

-10
log (7/70)

lOg(Two/To)

FIG. 6. Typical tension relaxation of a rod with initial conditions
satisfying Eq(40) from a numerical solution of E¢340). As in the
example of Fig. 5 we chose the particular initial conditi@ﬂgN
const andgﬂ>N:0. For two values oN the graph displays the
Fensionzp versus timer in units of critical forcep, =(7/1)? and the
typical relaxation timery=1%, respectively. In the cagd=100 it is
seen that the intermediate asymptotic power law7/2 is valid in
the time window 7y<7<< 75, Where 7y=N"r, is the relaxation
time of the highest excited mode. The extreme ddse (0?C illus-
trates the asymptotic behavior of the staircase regime for Idrge

Eq. (47) and it can still be approximated by the integral Eq.
(39). The parity of created and destroyed stored lengths, Eq.
(37), now takes the form

O €XH270,:(2Q% - )] = J _ doe%q). (49
V2Q
As below Eq.(44) we conclude that the exponent on the
left-hand side has to stay constant in time up to logarithmic
contributions. By using the definition d@, Eq. (29), this
implies that the tension is equal to the Euler force corre-
sponding to the mode*,
o=, (50)
as long as* is indeed the dominant mode. In fact, the dis-
creten* is a time-dependent quantity that evolves in steps
and approaches 1 in the final stage of the relaxation, which
corresponds to the first Euler buckling mode.
To illustrate the above discussion, Fig. 6 displays(tiaa-
malized line tensiong(7) obtained from the numerical solu-
tion of the implicit Eq.(34c) for Q(7). The relaxation sce-
nario shown is characteristic of the dynamics for the class of
initial conditions satisfying the condition in E@40). For
short times, one observes after a short transient period a
smooth intermediate asymptotic power-law behawidgr)
~ 712 which for long times develops staircaselike oscilla-
tions with plateaus ap,=n’p,(n e N), in agreement with the
above derivation.

D. Exact similarity solutions

In addition to the cascading of stored length that is
strongly localized in mode space, there is a different mecha-

In contrast, the sum\p_ representing the destroyed stored nism giving rise to the power law E¢4). This is revealed by
length has contributions from many modes even in the limitexplicitly searching for similarity solutions of Eg34¢) un-
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For 1< B<3, the ansatz Eq55) solves Eq(54) exactly
i in the limit that the lower bound tends to zero, or for times

(56)

Then the initial conditions Eq(55) parametrize a class of
power-law solutiongto our knowledggnot seen previously.

. The algebraic decay law can in this case be attributed to the
self-affine geometry of the initial conformation. Note that the
weakly bending condition expressed in Eg$2) and (11)
requires

m

exact similarity
solutions

T< a3|4.

._.
I
aje)s punoid

aoeds epow Ul
uoryezieno]

-
w

—00 +o0

(/NP

e 0= f dae®q) <1, (57)
FIG. 7. The amplitude/ag in the power law Eq(53) for the 1

B-1

line tensione in the bulk of a relaxing rod with power-law initial . . .
conditionsg‘;iq)ocq‘ﬁ. For B<1 (type Iginitial condFi)tions an upper e, A> I'fc.)r_ arod s.e.ctlon. of Iength An important example.
cutoff is required to keep the stored length finite. The relaxationOf these !nltlal condltlong 'S_ provided by the Contoqr of a stiff
then proceeds via the cascading of a localized peak in mode spad%?lymer In thgrmal qulllbrlum,BZZ) [13’14’ for which the
as depicted in Fig. @) and explained in Sec. IV C. Fgg8>3, the length 2\ /7 is identified as the persistence length of the
rod is essentially in the ground state from the beginning. The interPOlymer, which indeed has to be much larger then the length
val 1< <3 of type Il initial conditions comprises the exact simi- Of the polymer in the weakly bending limit. The correspond-
larity solutions derived in Sec. IV D. Thermal initial conditions cor- ing amplification factoA(q) with a-,~0.146 as a function
respond toag-,~0.146. of q is shown in Fig. 4b).

In contrast to the intermediate asymptotics discussed in

der the condition that many modes contribute to the relaxS€c. IV C, the dynamics for power-law initial conditions

ation dynamics and the sums in E84¢) can again be con- With 1<<3is not necessarily governed by a characteristic
verted into integrals. In contrast to the intermediateWave number that visibly dominates the contour undulations.
asymptotic power-law solutions obtained in Sec. IV C, whichFor @g=1 the amplification factor rather acts as a time-
obeyeda=const only up to logarithmic corrections, solu- dependent low-pass filter cutting off the mode amplitudes

tions Q(7) of the continuum limit of the constraint E¢B40),

0= J  dae®@fexd2e(2Q°~ )] -1}, (51)
can be found tha¢xactlyobey

a= Q“r!:const. (52)
Inserting the ansatz
o(7) = Q7 = (af D' (53)

with a yet undetermined time-independent paramet@rto
Eq. (51) and changing variables— q(a/ 7)*/4, we obtain

o=
Aldy 14
(54)

This is mathematically equivalent to E@4c) as long as the

1/4

dqeo( qﬁm >{exp[2a(— q*+209)] - 1}.

integral is not sensitive to itsmall) lower bound, so that the

with wave numbers larger thanEQ(T). This is to be con-
trasted with the situation in Fig(d), where the amplification
factor is strongly peaked arour@(7). Only in the limit 8
—1 do the self-affine initial conditions E@55) satisfy the
condition Eq.(40) that guarantees a large peak in the ampli-
fication factor, thus giving way to the scenario described in
Sec. IV C, butwithout logarithmic corrections.

E. Classification of power-law initial conditions

The fact that the value=a, that solves Eq(54) diverges
as B approaches 1 from above indicates an unphysical situ-
ation. The initially stored length in modes with large wave
numbers grows without bound and the integral opé¢q)
diverges. Hence foB=<1 power-law initial conditions as in
Eq. (55) are well defined only with an upper cutoff, say, the
wave numbeiqy corresponding to the highest excited mode
with indexN. Furthermore, with Eq55) the weakly bending
condition now requiregjyA < 1. Then, for timesr such that
Q(7) <qy, the initial conditions automatically satisfy the cri-
terion Eq.(40). Hence, after a transient time, power-law ini-

latter can effectively be taken to be zero. Then, for the inteyjg| conditions with exponentg<1 relax according to the
gral to be independent of time, the initial condition has to becascading scenario of Sec. IV C characterized by localization

of the power-law form,

0%(q) = APg P, (55)

in mode space.
We thus observe that the two distinct bulk-relaxation sce-
narios described in Secs. IV C and IV D are characteristic of

where the lengthA has to be introduced on dimensional power-law initial conditions withB<1 and 1<B<3, re-

grounds. The numerical solutiors=a, of Eq. (54) are de-

spectively. This suggests a classification of the typical relax-

picted in Fig. 7 as a function oB. As can be seen, the ation dynamics according to the exponghtAccordingly,
roughness exponepiis not completely arbitrary. In fact, no we classify initial conditions of the power-law form in Eq.

finite solutions fora exist outside the interval & 8<3.

(55) as type | if 3<1 and as type Il if K B8<3. Further
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of the contour will have doubled their wavelength under type

| conditions, the corresponding evolution @ 7) will have
hardly any noticeable consequences on the real-space image
of a type Il contour, which is dominated by undulations of
much longer wavelengths that are practically stationary on
this time scale.

As we pointed out in the Introduction, the relaxation of a
laterally confined rod that was discussed in the present sec-
tion can also be considered an idealization of the situation in
the bulk of a long stiff rod withfree ends that was initially
0 11 o0 VZ0(n) under high pressure, Which also has been_simul[alé]j At
the free ends, the tensiap(s,7) has to vanish as a conse-
guence of the boundary conditions Eg6). In the following

~ FIG. 8. The situation in mode space after timéor representa- \ye face the question of how it falls off between the bulk and
tive initial conditions of type [5=0, a>1, cutoffqy>Qasin Fig.  the ends.

5) and type lI(thermal initial conditions3=2) with the same total
stored lengthp®.

B=0a>1

elg,7)

V. THE RELAXATION FOR OPEN BOUNDARIES

support for the pertinence of this distinction will emerge in ) ) )
the following. Both the conformational relaxatiqsee the In the present section and in the Appendix, we develop a
following paragraphand the boundary relaxatiasee Sec. r_nethod to treat situations where the tension exhlb!ts sul_)stan-
V) will be seen to be markedly different for type I and type tial spatial variations _aI(_)ng the rod. 'I_'he basic idea is as
Il initial conditions. follows. The major variation of the tension, namely, from its

The case3> 3 can be dismissed for the following reason. bplk value to zero at the open boundaries, occurs within a
Upon expanding the integrand of E&4) into a Taylor series ~ (time-dependentboundary layer of a yet unknown length
for small g, it is seen that foj3>3 the integral would be \(7). In the following .paragraph we will motivate thg crucial
dominated by the lower bound, indicating the breakdown oféngth scale separation betwe(r) and Q™*(7). It will al-
the continuum approximation. The sum in Eg4c) is then 10w us to apply our leading order results from Secldwally
dominated by its first term, the first Euler buckling mode.on an intermediate scalér) (Q"*<I<\), over which the
This yields a tension of about= ¢; %172 A confined buck- tension does not change appreciably. This in turn will enable
led rod with the initial condition Eq(55) and3>3 is essen- Us to derive closed equations for a suitably coarse-grained
tially in the ground state from the beginning. tension profileg(s,7) in Sec. V B. This adiabatic approxi-

We have thus achieved a complete classification of thénation will eventually be justified by a consistency check.
possible relaxation scenarios for all generic initial conditions(lts precise relation to the regular perturbation scheme of
(see footnote Pfor the key problem of a longitudinally con- Sec. IV will be clarified at the end of Sec. V and in the
fined rod, which was previously studied in numerical simu-Appendix) Our discussion of the boundary-layer problem
lations [11]. The results are summarized in Fig. 7. Thewill parallel the discussion in Sec. IV in discerning again
power-law decay Eq4) of the tension emerges as a quite type | and type Il initial conditions. Thereby we will in par-
universal feature of the problem, whereas the accompanyinicular recover for the bulk our earlier results, which were
conformational relaxation will now be shown to be funda-based on the assumption of longitudinal confinement.
mentally different for type | and type Il initial conditions.

A. Length scale separation

F. Conformational relaxation Technically, to address spatial variations in the tension

For type | initial conditions the intermediate asymptotic profile, which could be discarded as of higher ordekim
dynamics is completely governed by the characteristic wavethe regular perturbation scheme of Sec. IV A, we need to
length Q7. The latter directly determines the tension andpush the analysis beyond the leading order. In Sec. IV B we
visibly dominates the real-space image of the contour, so thatave determined the time evolution of the transverse dis-
tension decay and conformational relaxation proceed hand iplacements | (s, 7) of a rod section of length to leading
hand. A markedly different scenario results for type Il initial order ine. By inserting with the help of Eq.13) the result
conditions. To appreciate the difference, consider the repredack into thethigher-ordey equation of motion Eq.15b) for
sentative distributions of stored length in mode space for, we can iteratively estimate the order of magnitude of the
type | and type Il initial conditions as they have evolved afterspatial variation of the tension, which is determined by the
time 7 (Fig. 8). The stored length that was initially distrib- nonlinear terms.
uted in the tailsq=y2Q(7) has been accumulated around Note that the leading-order solution for (s, 7) depends
Q(7). Due to the substantially different relative weight of on the force history of the particular rod section under con-
these tails in the initial conditions, the corresponding distri-sideration, which enters via the characteristic wave number
butions at timer look utterly different. While over a time Q(7). We recall from our discussion of the amplification fac-
interval 16r the undulations dominating the real space imageor in Sec. IV B that\s“EQ(r) acts as an effective ultraviolet
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“substantial” variation of the tension on the scalavithout

its complicated wiggling on the “microscal@.*, which is

at most of ordeiQ20(e). The natural way to get rid of the
short-wavelength fluctuations without losing the substantial
part is to consider coarse-grained quantities that are averaged
over the intermediate scale More precisely, we define for
any arclength-dependent quantity(s) a corresponding

FIG. 9. The length\ over which the tension increases toward Coarse-grained quantity(s) by
the bulk value is much larger than the characteristic let@jth of

12
Fhe_transverse undulations in the_ bulk, as expressed by the m_equal- g(s) = _J dog(s+ o). (62)

ity in Eq. (60). The slowly varying partg(s) of the tension is 1)

obtained upon averaging over the coarse-graining ddhlat satis-

fies the condition in Eq(61). It will turn out that for the quantities of interest this average

is actuallyindependentf | to leading order irg, if | obeys
cutoff for the contour undulations. From Eq&3) and(12), ~ the double inequality Eq61). For the tensiony(s, 7) this

we thus have for example was already established in Sec. V A.
A closed equation for the coarse-grained tensgprcan
2r" =(r'?)” < Q%0(e). (58)  now be derived from the full equations of motion, E¢E5).

Upon integrating the longitudinal E¢15b) with respect to
the arclength and using the free boundary conditions Eq.
(16), we at first obtain an explicit equation for the spatially
varying tensiong(s, 7) before coarse-graining,

Time derivatives are estimated by recourse to #§a). Ap-
plying this reasoning to Eq.15b) after differentiating with
respect to arclength, one eventually finds

¢" < Q'O(e) (59)

S S
for the order of magnitude of the tension variations. Gener-  ¢(s,7) = é’f dsr = (1 —Z)f dsr ' ar, +rj(s)
alizing Q(7) — Q(s, 7) to allow for a slow spatial variation of 0 0
the characteristic wavelength, we can integrate(E). from + (s, 71, (s). (63
one end of the contour, wherg=0 andQ=0, toward the R
bulk, where o= ¢,,=Q?=Q?. (Here and in the following, Here {=¢)/¢,=1/2 is theratio between the transverse and
we symbolically write " to refer to regions deep in the longitudinal friction coefficients. Using our knowledge about

bulk.) SinceQ=Q,,, we can infer the bulk we now show that only the first term on the right
N hand side is able to produce a term of the order of the tension
Q2= %:f dsf dse” < Q*\20(e) ¢, in the bulk. Counting arclength derivatives in orders of
0 0 Q.. in the spirit of Sec. V A,¢p,, is estimated as of order

) ) O(Q?). The crucial fact that\eEQm acts as a high-wave-
by '”teg,ra“”g through the boundary layer of lengttw). number cutoff for the contour fluctuations together with the
From th'fs we read off a lower bound for the order of mag-|c4| constraint Eq(13) implies that the last two terms are
nitude ofA, O(eQ?) and thus always small compared to the bulk tension
0 (AQ.) t< O("?. (60) ¢... The same reasoning can be applied to the second term on

the right-hand side after suitable partial integrations,
For smalle— 0, we thus have a strong length scale separa-

tion between the wavelengt®.! of the dynamically most S Ba.(1%a) s L

active contour undulations and the scalef the substantial f dsior,| = f ds’ (=r'" = (er')")

tension variations, i.e\>Q;% It allows us to define a 0 0

length I(t) intermediate between the characteristic scales e 2 2 )

Q.Y(t) and\(t), so that < [r\r[+r'7+ . "=0(eQ5).
1<Ql<el? (61) Consequently, the necessa®yQ?) term on the right-hand

side of Eq.(63) must be the one depending on the longitu-
Figure 9 illustrates the relation between the various lengthsdinal velocityd,r,. It represents the pressure that is generated
An immediate consequence of the inequalities E68) and  in the rod by the outward motion of the relaxing boundary
(61) is that we can imagine the free rod at any time as contayer. Differentiating Eq(63) twice with respect to arclength
sisting of rod sections of lengt>Q_", each of which is and integrating over time we can therefore write to leading
subject to a uniform “average” tension. After specifying this order
average we will be ready tlocally apply our results of Sec.

IV to the problem of a rod with free ends in the next sections. g‘lq)" _ 5_1J dre'(s7) = 0(s,7) - 0(s.0).  (64)
0

B. Adiabatic approximation

The length scale separation observed in the previous se&ince we are interested in the long-wavelength fluctuations
tion suggests to look for a mathematical description of theof ¢, we average this equation over the lenfind obtain
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gwl(p;'(s, 7 =A0(s, 7). (65) :‘r?rtche()e abt utlrll)e end and;'=0 ats— o (conserved stored length
The physical interpretation of this important result is that the The differential equatiori67) is of a type frequently en-
releaseAg,=g(s,7)—0,(s,0)<0 of stored length corre- countered in classical mechanics: By interpretihgas the
sponds to a negative curvature in the time integrated tensioposition of a particle§mass=1) ands as the time variable,
profile &' <0. Stored-length release acts as a source for spd&d. (67) represents Newton’s equation,
tial variations of the time integrated tension. For increasing
arclengths we expect the tension to satura®!(s— o) D (s) = = dg U(D), (68
— 0, corresponding to a conserved stored length in the bulkf . N .
Ap(s—)=0, just as we argued throughout Sec. IV. In this or a particle moving in a potentidl (®)),
sense, Eq(65) generalizes the conservation law Ef9) for e 290 _ 1
the bulk to the boundary layer. For the interested reader a U(®)=¢ dqeo(q)[cpl - —e-Zq“r]. (69)
second, more formal derivation of E@5) via the method of (s q

multiple scaleq21] is given in the Appendix. , . . - .
In order to close Eq(65) we need an expression for the For fixed timer, this potential isN shaped as a function of

stored-length releastp, on the scald as a function ofb,. D, T_he mecha_nical analog to our task i; to find the ins_tanton
Here, we can simply refer back to Sec. IV B. There we haves°lution ¢, which approaches the location of the maximum
dealt with one “coarse-graining element” of lengtto lead- ~ Of U(¢1) ass— . Equation(68) can be integrated numeri-
ing order ine. We recall that a crucial ingredient of the cally for all times and arbitrary initial conditiong®(q). Hav-
(ordinary) perturbation calculation in Sec. IV B was that we ing obtained®(s, 7), the tension profilep(s, 7) is extracted
could neglect spatial variations @fs, 7) to leading order in by taking the derivative

e. The length scale separation observed in Sec. V A shows

that we can neglect them on the schlehich is much larger Qi(s,7) = 0:y(s, 7). (70

] et \
than the characteristic waveleng@r - of the dynamically  apajytical progress is again possible for the generic relax-

most active transverse modes. Therefore, our above pertuion scenarios that emerged from the discussion of the bulk
bative results can be used in the present boundary layer caly gec. |v. We therefore take the initial conditions to be of
culations. With the Eq¥26)~30) and(313 we can describe o power-law form in Eq(55). To simplify the notation we
the evolution ofgy(s, 7) as a function ofp(s, 7) by identify- il from now on drop the subscriptd™for coarse-grained
ing the coarse-grained quantities with the corresponding SPgjuantities. As before, we consider type | and type Il condi-
tial averages in Eqq17) and(22). This identification con-  tjons separately.
stitutes the adiabatic approximation.

The stored-length release in the continuum limit is now o _
taken over from the right-hand side of E&1), C. Bxact similarity solutions
For type Il initial conditions, i.e., Eq55) with 1<8<3,

© 2 2_ 2 . . . . . .
Agy(s7) :f dao®(q)[e 1 RE7_ 1] (66) one can find exact S|m|Ia.r|ty SO!U'[IOHS of E(G7). To this
-1 end, we make the dynamic scaling ansatz

with Q|(s, 7) the spatially weakly varying, adiabatic quantity. _ ap S

There are two things to remark about E66). First, the use O(s,7) =7 g Ag(7) (71
of an integral instead of a sum is legitimate, if the integral is b

not dominated by its lower bound. We infer from the lengthfor the integrated force, with the characteristic length
scale separation E@61) that this is the case if the integrand 3-5

is dominated by wave numbers close to the effective upper _ 120 1-48, 5 _9o™h

cutoff y2Q,. The wiggles on the scal@! are then the major Nol(7) = AT and 0= ' (72)
source for the release of stored length. Second, in the most ] o

general case, we should allow for a weak spatial dependend@ Ed. (71) the bulk dynamics has been explicitly taken out
not only of Q, but of 0%(q) as well by writing°(q,s). For of the_ scall_ng form, an_d the def|n|t|on af; natu_rally res_ul_ts
simplicity, we neglect such a spatial dependence in the initiaffom inserting Eq(71) into Eq. (67) with the aim of elimi-

conditions and focus on statisticallyniform initial excita-  hating the parameter dependence. That the resulting differen-
tions. tial equation foryi,(£) is in particular time independent for

i i i i i 7<I* is more easily seen after another variable transforma-
Upon inserting Eq.(66) into Eq. (65 and inferring o y

QA(s, ) =®|(s, 7/ 27 from Eq.(29), we obtain a closed dif- tion g—g ",

ferential equation forb;: o

. V&) = f deg ATl -1). (79
D(s,m)=¢ 1 dae¥(Q)[e ™7 - 1], (67) i

The boundary conditions ar$B(O):¢//2,(§—>oo):O. Having
Specializing to the left end of a semi-infinite rod, this equa-solved Eq.(73) for ¢4(¢), the tension is extracted by differ-
tion has to be solved for the boundary conditishs=0 (no  entiation,
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VaBxs

8/As(7)

FIG. 10. Type II: Stress profile in the boundary layer, given by

the scaling functionys(s/\g(7)), Eq. (74). The caseB=2 corre-
sponds to thermalized initial conditions.

Hen=abisn = af[ 71/2‘/”3( 3 S(T)” \/% (;)

(74)

To make contact with Eq53), the amplituda’a_ﬂ calculated
in Sec. IV D (see Fig. 7 was explicitly taken out of the
scaling function, so that the latter is normalized£— =)
=1. The combinatiom’a_ﬁxﬁ(g) then obeys

— 1 -
Japxs® =300 - ~Leuyn. @9

In Fig. 10 the numerical solutions are shown for different

values of 8. We have plotted the combmaﬂomBXB(s/)\B)
instead of the normalized scaling functign, because the
graphs of the latter cross each other for differ@ntendering
the figure too crowded. The slou%(g) at the origin thus has

a somewhat weaker dependence s suggested by Fig.

10. It is seen thag,(s/\ ) saturates fos=\ 5, which estab-

lishesA; as the characteristic width of the boundary layer.
Figure 10 moreover shows that the tension profiles have a
nonzero curvature throughout the boundary layer. According
to Eqg. (65) the release of tension and stored length is thus

spread over the whole boundary layer. Observe wats
x1/\0° from Eq.(57) so that
Ng o 78\ 0° (76)

Interestingly, the small paramete’?:O(el’Z) appears in the
denominator so that the limits—0 ande— 0 do not inter-

PHYSICAL REVIEW EO, 031802(2004)

ible polymers; e.g., if a weak longitudinal force is suddenly
applied at one endl18], or if the polymer is exposed to a
shear flow[5].

D. Approximate similarity solutions

As explained in Sec. IV E, type | initial conditions with
roughness3<1 and a large wave number cutoff

Qv>Q~ 71 (78)

satisfy the criterion Eq(40). In this case we can use the
right-hand side of Eq(44) to estimateAp(7) in Eqg. (65),

{7 ~ 0%(Q)AQ exp(2a) - @°, (79)
where we approximated
an an>Q AN
f ~ dge%q) = f dge%q) = o° (80)
\V2Q 0

as valid for<<1. Rather than in the absolute valuedfwve
are interested in the ratio

N _ ®(s,7)
(s, 7) = PYER (81)
where®d.(7) is the value of® in the bulk,
D (7) = limd(s,7). (82

S—©

By the definitions Eqs(81) and (82) ¢(S—>oo 0)=1 and

#(0,7)=0 at the free end to satisfy the boundary condition.
As in Sec. IV C, the vanishing of the left-hand side of Eq.
(79) in the bulk,

0~ 0%Q.)AQ. exp2a..) - ¢°, (83
implies that the exponent
. (7)?
20, = i =~ const (84)
27

Is constant in time up to logarithmic corrections. Now we
divide Eq.(79) by ¢° and obtain, using Eq$81), (83), and
(84),

\’ a’oc

ALCL 2°(QAQ exp24]
é’Q O(Qoo)AQoo exr‘[zaw:l .

change. This indicates that the boundary-layer phenomenaserting the initial conditions Eq55) and using the defini-

are not accessible by ordinary perturbation theory.in
In the interesting case of thermal initial conditiofi8
=2) the boundary layek g-,(7) grows according to

Ao(7) = g«—l/ZA—lIZTJL/B’ (77)

where 2\/ 7 is the persistence length. This particular relax-
ation scenario can be imagined to be the consequence of a
sudden temperature jump from finite to zero temperature.

Interestingly, the boundary-layer lengiy(7) also governs

tions of @, Q, andAQ from Sec. IV B, we arrive at

—

\axT

ze°

For givene, Eq. (85) is solved by the scaling ansatz

Hen =il %)

Y =1- P exd2a, (- 1)]. (89

(86)

the thermodynamic propagation of tension through semiflexwhere the width of the boundary layer is now given by
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T [ T separates the buckled bulk from the relaxed boundary layer.
1 / This is in accord with our conclusion at the end of Sec. IV
Py that for type | initial conditions tension decay can be identi-
fied with conformational relaxatiosee Fig. .

From what was said there, we therefore could have
Y guessed the results of the preceding paragraph from an intui-
tive scaling argument that reverses the above line of argu-
increasing oo ments. Starting from the very assumption that the rod con-
sists of totally straightened tails of length(7) that
dynamically constrain the bulk, one concludes that the bulk
| | | pressuree..(7) drives the tails outwards at the velocity
0 needed to balance this pressure by the Stokes friction onto
the tails, i.e.,

s/b

FIG. 11. Type I: Stress profile in the boundary layer, given by @x(7) = Lo\ (7). (93)
the scaling functiony(s/\ (7)), Eq.(89). The displayed curves cor-
respond toB=-1 anda,.=5,10,15,20,25. Foincreasinga.,>1,
x(é€) approaches its limiting forny(é<1)=¢ and y(é>1)=1. The
asymptotic behavior is independent £ 1.

On the other hand, the velocity of the boundary layer must
be equal to the stored-length release per unit of time
=0%,\, which takes place in the small crossover region be-
tween bulk and boundary layer. Using the power law &g

R for the pressure within theconstrainegi bulk with a prefac-
AP = 2(£0%) Y ra) Y4, (87)  tor Va.. we obtain the closed differential equation

and thus—in contrast to what we found under type Il

conditions—is directly proportional t@,%(7). As the bound-

ary layer width\ ; under type Il conditions, it is inversely which is solved by Eq(87) for the length\(7).

proportional toye®=0(€"?), which entails the same conclu-

sions as drawn after EG76). E. Consistency
Inserting the scaling form Eq86) into Eqg.(85) yields

0N = Va T, (92)

Since both length®.(7) and\(7) grow in time—under
type Il conditions even with different exponents—one might
worry about the time domain of validity of the length scale
~ separation Eq(61) underlying the above derivation. Consis-
After solving for ¢(¢) the tension is found as before, tency of the adiabatic approach requires that the wavelength
Q'=(7/a..)' that dominates the sum over all modes is
much smaller than the length over which the tension varies,

SVO=1-F PP exfa -1 (89

o(s,7) =3, P(s,7)

| ~(s s~ (s i.e., the width of the boundary layér(7). For type Il initial
=\ lﬁ(‘) - —90'(—) conditions, we thus need

T A 2\ A

a. (s Qu(DNp(7) = & *THANIAHF2 251 (93)
Vo) (89

For 7— 0 the inequality Eq(93) is certainly true, because
where the normalized scaling functigaié) is given by B-1>0. The producQ..A; becomes comparable to one for
Ag(7)=A. However, this point of inconsistency cannot be
reached, since we had to assume in the discussion after Eq.
(55) thatL< A in order to ensure the weakly bending limit.
Likewise, for type I initial conditions we need

X =) - 5/ @ (90)

In Fig. 11 the scaling functiory(¢) is shown for different

a,>1. With. increasingaoo the curves converge from below Q. (IN(D) = 2[%/(290)]1/2> 1. (94)

to a piecewise linear form that consists of a linear boundary

layer x(§)=¢ for §<1 and a bulk areg(§)=1for §>1. This  Again, this generally holds in the weakly bending limit Eq.
limiting behavior is independent of the exponggt 1. Ac-  (12).

cording to Eq.(65) it corresponds to a completely straight- The adiabatic approximation thus proves to be able to
ened boundary layer with the linearly growing tension beingdescribe the arclength-dependent tension relaxation in the
fully due to the accumulating force from the viscous friction weakly bending limit. On the other hand, the consistency
against the solvent, and a buckled bulk regime with a spaeonditions Eqs(93) and (94) can be taken as another indi-
tially constant pressure conserving its initially stored length.cation that the weakly bending limit is in fact a necessary
From Eq.(65) it is moreover seen that the limi,— ingredient for the universality of the relaxation process and
physically corresponds to a situation where the region ofn particular for the characteristic power-law relaxation Eq.
stored-length release shrinks to a single poirg=at(7) that  (4).
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F. Terminal relaxation o(s,7) =const=0. (98

Up to now, we have considered the growth of the bound-a; first sight this contradicts our intuitive understanding that
ary layer in a rod that has(éormally) semi-infinite arclength  he pulk of a relaxing rod should be under pressure at least
parameter spacs=0, ... 2, which is an idealization. How- o short times. However, fixing the length and time scales
ever, the foregoing discussion obviously applies equally to &nq + of the problem whilee— 0, the prediction of zero
free rod offinite lengthL for sufficiently short times: As long  tension is indeed recovered from the adiabatic approach via
as the size of the boundary layer is much smaller than thg,e vanishing of the relaxation timg in Eq. (95). This is
total lengthL the presence of a_second free e_nd is irrelevantapparem from Eq(97) for type | initial conditions and from
to the boundary layer at the first end. The time where th@q_ (87) for type Il initial conditions. Thus for any fixed
boundary layers span the whole rod marks the crossover 0 @yen total lengti_ and timer there exists a@, such that the
new behavior. For definiteness, we define the crossover t'mﬁrediction of the multiple-scale perturbation theory reduces
7 by to that of the ordinary perturbation scheme &€ .. How-

N(r) =L (95) ever, the interesting short-time regimes 7¢(¢,L) is not ac-
f ' cessible by ordinary perturbation theory. Upon fixingndL
Further contour relaxation proceeds essentially free of later@dnd considering smalf— 0 (i.e., the situation just after re-
stress, because the tension is equilibrated everywhere witRoving the confining walls that served to keep the tension
the free ends for> r;. The time can thus be identified as Spatially constant the decay of the bulk tension obviously
the characteristic decay time for the tension. From E2@.  has to occur in an arbitrarily narrow boundary region. In
and (27) it is seen that after time; all modes decay inde- Other words, the putativ®(e) term f' in Eq. (15b) has to

pendently exponentially throughout the whole rod, diverge on physical grounds, thus signaling the breakdown
X of ordinary perturbation theory for open boundary conditions
o(q,7> 7) =~ o(q,m)e’d ™™, (96) in this limit.

Stored Iength iS no Ionger Conserved, and a mode with wave VI]. COMPARISON WITH NUMERICAL SIMULATIONS
numberq has thus decayed after time= r+q .

We recall from our discussion at the end of Sec. IV that In this section we want to point out how our results for the
Eq. (96) corresponds to very different behavior of the overallstress relaxation manifest themselves in various observables
conformational relaxation for type | and type Il initial con- that have been monitored in numerical simulations. Golubo-
ditions, respectively. Consider again Fig. 8. In the type Ivic et al.[11] investigated the effect of a sudden temperature
scenario, atr; the stored length is concentrated in modesjump on an initially straight rod of lengthconfined between
with wavelengthsq™*~Q(r;), which (visibly) dominate two walls (hinged endp The frustration due to thermal ex-
the contour undulations. Hence, we can conclude that it takgansion is modeled by a relative initial compressigh< 1
a time of the order ofr to release the bulk of the initially ©Of the backbone of the rod. The consequent initial presgure
stored lengthe® after the dynamic confinement ceases. Indrives the evolution of buckles with wave numbe)
other words, the rod straightens within a time of the order of= V¢i/2. After a transition period characterized by backbone
7. This conforms with the earlier conclusions that tension€xpansion most of the lengtf! is stored in bending modes
relaxation and stored-length release occur in parallel, so thatith wave number close tQ; rather than in backbone vibra-
the conformation in the boundary layer is the straight groundional modes. The backbone length appears to be almost con-
state. stant from there on. The rod relaxes in this second stage as if

On the contrary, for type Il initial conditions the stored it was incompressible with a pronounced peak in the initial
length distribution in mode space hardly differs from themode spectruniprepared by the thermal expansion of the
initial condition Eq.(55), i.e. it is still strongly peaked at low rod). The scenario thus agrees with the assumptions of Sec.
q and the total stored length has not changed appreciably. IV C. Our analysis there explains why and how the peak
takes a timer=L* until the contour undulations that carry grows and sharpens in time. Asymptotically, we predict the
most of the stored length have relaxed. From the definitiondominant wave number to evolve accordingQe- 7, as

Eqg. (95), of 7t and the boundary layer growth law, E72), observed in Ref[11] by analyzing the tangent-tangent cor-
we infer relation function. The fundamental power law E4) for the

tension derived in Sec. IV C is the basis for the power-law
L4 7 = (0% 2% = O( 2%y > 1. (97)  time evolution of a number of other observables. For ex-

. , ample, the mean-square transverse displacement
The conformational relaxation takes much longer than

particularly asdg 53— 0. This heralds thétrivial) limit of W=t ld 2
instant tension equilibration fo8=3. As already observed - o sri(s7)
for a confined rod at the end of Sec. IV as well as for the
boundary layers discussed in Sec. V C, the conformationalvas observed to obey?=20%7?« 742 [11] and interpreted
relaxation for@3>1 lags behind the stress relaxation. as an immediate consequence of the existence of a dominant
We finally comment on the relation to the ordinary per-wavelength, which we established above for type | initial
turbation approach of Sec. IV. For free ends, it would toconditions. That is, from the dominance Qftogether with
lowest order predict the conservation of stored length, one has

(99)
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SRP(1) = RP(1) - RP(0) = 72,

which is indeed empirically found to hold with high accuracy
over a broad time windoy12]. Note, however, that accord-
ing to Eq.(103) this (initial) variation of the radius of gyra-
flon measures the time integral of the bulk tension rather
fiian the growth of the boundary layer. It thus provides a

w?=22% 0, )0y =~ 20(Q NQ 2= 20°Q72 ~ 7. (104

(100

Analogous arguments can be used for other observed qua
tities, such as the stored elastic energy or the dissipation rat
etc. Moreover, as we have shown in Secs. IV B and IV C, th . ’ : . .
cascading \(/)f stor;/\(lj Iength in r\:wvodle space maintains and e ractical direct measure @(7—){ butis not suitable to moni-
hances the maximum in the mode spectrum asymptotically,0 ' ;Egezznggrggt;ggglr rci{ﬁxggor;ine d by probing the end-to-
even if the initial mode spectrum has(slowly) decaying end distance 9 yp 9
form. The validity of Eq.(100) and the related power-law
behavior of other observables thus also extend to this situa- Ri=L-ryL)+r,0) (105
tion. ) ) )

The simulations by Spakowitz and Wafitg] considered ~instead. Its temporal changéR,(7)=R()-R(0) is obvi-
the same setup as in RéL1] but with free boundary condi- ©Ously directly due to stored-length release. Under type | con-
tions. In addition to a higher-order effect guiding the evolu-ditions, where stored-length release and tension decay go
tion of helical modes, the same power laws are found for thdand in hand and the boundary layer is essentially straight,
dominant wave number and the evolution of transverse disthe released length is nothing but the total stored length that
placements, respectively. This becomes more easily comprdé@s initially contained in the boundary layer, i.e.,
hensible from our boundary-layer calculations, which show 0 [75_1/4
that most of the rod should indeed behave as if it were lon- OR|(7) = @°N(m) = Ve°r ™. (106
gitudinally confined as long as the boundary layer does not Rods with type Il initial conditions behave differently.
span the whole filament, e.g., for< ;. Additionally, as a  Again, stored-length release does not occur in the bulk.
measure for the longitudinal expansion Spakowitz and Wangiowever, the stored length in the boundary layer is released

[12] proposed a longitudinal radius of gyraticﬁqf as the

much more slowly than the boundary layer grows, as dis-

largest eigenvalue of a gyration tensor. In our terms, thigussed in Sec. V F. Not all of the initially stored length but

quantity can be identified with

L
R&i(m) = %f dzem —s+ry(s, D (109)
0

for a rod with a time-independent longitudinal center of mass
coordinate zcy=scm—ri(Scm) lying approximately at the

center of the rod,

Zow +1,(0) = L/2. (102

Using the arguments developed above, the time derivativ

9, R%,(7) is in the limit 7— 0 given by

1 L
Rei9-Rei = [fo dzep =S+ 1] =0d, 1)
Li2
=~ f dS&TrH (1033
0
L/2 S
:f dsJ ds'ag,o(s',t) (103b
0 0
={ g, o 712, (1030

The first approximation Eqi1039 follows from Eg. (102
and from the fact that for short tim@sr is finite (to leading
ordep only close to the ends=0 ands=L. Equation(1039

holds because oftgz<p”/2 after differentiating Eq(64) with
respect to tim_e. Integrating E@LO3) in time and observing
5(0)~L/(2y3) one gets the algebraic growth law

only some fractiom\p* (q, 7) has been released after time
The latter can be estimated from E®S6), since the relax-
ation within the boundary layer is essentially tension-free:
7,1/4

* <L
Ae*(q,7)= f dge®(q)(e @7 —1) ~ AVBABDA
L—l

(107)
Asymptotically we can thus write
SR(7) = AQ(mINg(7) < V@O A V4%, (108)

for short timesr< 7. In the last step we uset' #« p° from
Eq. (57). For 7= 7; the growth of the boundary layer satu-
rates aftA =L, so that for long times> 7

SR(7) = Agp(rL o= 7PV, (109
In summary, for type Il initial conditions
— < +1
Vo078, 5= ET (r<m),
SR(7) o (110

B_
=22 e,

QOTVZ,
In particular, we note that an initially thermalized rod first
expands according t6R, = 738 and eventually agR, o« 74,
The exponentsy; and y;, which obeyy; =y, +6, are dis-
played in Fig. 12 together witid; for comparison.

The initial growth laws Eqs(106) and (108) including
prefactors can also be derived more rigorously from the scal-
ing forms for the integrated tension derived in Secs. V C and
V D For type | initial conditionsAg(s, )/ ¢° is given by the
right-hand side of Eq(85); hence
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1/2 I present case, since one can show the “microscopic” contri-
. butions to obey the same power-law dynamics but with a
_| prefactor of lower order ire.

Altogether, it appears that evidence for the bulk relaxation
of type | initial conditions, i.e., in the regime of mode-space
localization corresponding t8<<1, can be found in existing
= simulations. The more complicated intermediate asymptotic
—] regime for type Il initial conditions and our predictions for
the boundary-layer dynamics represent interesting additional
features, which could be verified in simulations by probing
0 ) the growth of the end-to-end distance. Finally, we anticipate
a result of ongoing work15] in which we include thermal
noise in our considerations. The power lagust the prefac-

FIG. 12. The exponenm; and y; (grey) determine the growth tors) derjved here fo_r a determin.istic. rod wip=2 turn out
SR, 77 for the end-to-end distance on shdrt<r) and long (O describe the physics of a semiflexible polymer after a sud-
times (7> 7), respectively. The exponed=y; -, (black char- ~ den change in persistence lengthihe latter may be experi-
acterizes the growth ;~ 7% of the width of the boundary layer. ~ mentally realized by addition of chemicals rather than by a

sudden temperature quencihus, semiflexible polymers

3/8

1/4

1/8

w may lend themselves to an experimental investigation of our
SR/(7) :zf dsAo(s,7) scaling predictions for the particular cage=2. After this
0 work was completed, we learned about related work by

w Bhobot-Ravivet al. [22] for DNA.
=2 J dse®(1 - ¢ P2 exp{2a. [ YA(s, 7) - 11})

0 VII. CONCLUSIONS AND OUTLOOK
= )\(T)QOJOC de(l - ;,,—<1+,8)/2 exp{2am[;02(§) -1 _ We ha\_/e de_veloped and applied in Sec. V and the Appen-
0 dix an adiabatic method to calculate the overdamped hetero-

5. 14 geneous stress relaxation in a multiply but weakly buckled
o« O, (111 rod. The possible generic relaxation scenarios could conve-
niently be characterized in terms of an expongmharacter-
The exact prefactor can be obtained as a function of thgzing the roughness of the initial contour. The coarse-grained
appropriate scaling function by evaluating the integral nupressureg(s, 7) along the rod backbone could be cast into

merically. For type Il initial conditions one finds the universal scaling form
* a S
. (5=~ ( ) (113)
OR(7) ZJO dsAo(s,7) @ - XB Ng(7)
o o , , with a boundary-layer width
=2 dSAl_Bf dag Are?al®sn-a7] _ 1
JO _ dad™l ] Ng(7) ~ 7%, (114)

and a normalized monotone scaling functigx(é),

xs(end =0, yz(bulk) = 1.

o\ 077, (112 The latter was calculated numerically and displayed in Figs.
10 and 11 for the two fundamentally different cages 1
which also gives an explicit expression for the prefactor in(type ) and 1< <3 (type lI), respectively. The amplitude
terms of the scaling functiogi(£). \““‘CTB of the power-law decay of the tension in the bulk de-
We finally comment on a possible problem that couldpends on the initial conditions as summarized by Fig. 7. The
arise because of the “microscopic” natureds. Note that, exponentd, depicted in Fig. 12 characterizes the growth of
in contrast toéRﬂG, it is also sensitive to microscopic details the width of the boundary layer over which the tension con-
of the relaxation and the initial conditions, since it containstinuously decays from its bulk valuéaﬁlr to zero. The
contributions from Fourier modes beyond those correspondaLticular case of thermal initial conditions corresponds to
ing to the coarse-graining lengthin particular, the longitu-  Vas-,~0.386 and\z-,=1/8. Fortype | initial conditions
dinal projection of transverse fluctuations near the endshe dynamics is governed by a unique characteristic dynamic
could possibly mix into the genuinely longitudinal dynamics, length scal€)™. Tension propagation coincides with contour
thereby affecting the observed time dependence. This effecelaxation. The contour has relaxed by the timevhen the
plays indeed an important role for the longitudinal fluctua-tension has equilibrated throughout the rod. On the contrary,
tions and linear response of stiff polymers pulled at theirfor type Il initial conditions, the boundary-layer width con-
ends[2,18). The situation is somewhat more fortunate in thestitutes an additional dynamic length scale that behaves dif-

- Al—ﬁT(B—l)M)\B(T)fOO dngoo dqq—ﬁ[ezqz[l//(§)‘q2] -1]
0 0
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ferently fromQ™1. Tension relaxation precedes contour relax- r, = 61/2h0 +0(e?),
ation and most of the contour relaxation occurs under
negligible tension.
From these central results we derived corresponding ¢= o+ epy+ole). (A2)

power laws for a number of observables that seem well. . . . .
suited to test our predictions in simulations. In particular, WelEIlmlnatlng the(dependentcoordinater, via the local con-

showed that the longitudinal radius of gyratiﬁﬁ is suitable straint I_Eq.(13) to th? required or_der and ins_erting the power

to directly probe the(universa) tension relaxation in the expansions EqA2) in the equations of motion yields

bulk, i.e., the prefactor in Eq(113). The more complex

boundary-layer growth Eq114), which sensitively depends

on the type of initial conditions, was shown to be reflected in

the conformational dynamics. It can be ac'cessed by amea- Q= (95%4. €20xdy o + 62a,9§¢,0 + 6[(9>2<¢1 = Xo(%,y)]

surement of the longitudinal end-to-end distafe which

was predicted to exhibit the intriguing dynamical crossover +0(€; €%9). (A3b)

behavior summarized in E¢110).

Following Spakowitz and Wanfl2], an interesting route By

for future theoretical investigations could be to allow for 2 L L

higher order contributions to the harmonic wormlike-chain _ 2 2 2 P

Hamiltonian in Eq.(1) to analyze the intriguing nonlinear Xo(x,Y) _Eaf(axh(’) +§ax[@°(&xh0) 1+ ﬁai(axh(’)

phenomenon of helix formation and coarsening. .

With minor modifications the adiabatic method developed — (1 =9 (3xho)(d;ho)],

here can be used to determine stress profiles for nondeter-

ministic, thermal dynamicé.e., for semiflexible polymers in We have summarized terms nonlineahi The O(1) part of

various situations of external drivipgand will thus be help-  EQ.(A3Db) together with the requirement gf being bounded

ful in establishing a unified description of tension propaga-for largex imply that

tion in stiff polymers. In fact, even the athermal case consid-

ered here can for the special chojée 2 be interpreted as a oo(X,Y) = @p(y) (A4)

special nonequilibrium thermodynamics problem: the free

contour relaxation after a sudden temperature jump in thés independent oX, so that theD(1) andO(e%) terms of Eq.

limit of vanishing final temperature. The above derived scal{A3b) vanish. The leading order in this equation could there-

ing behavior(but not the amplitudgscan be shown to gen- fore be eitherO(e2®) or O(e). With Eq. (A4) we can solve

eralize to the case that the final temperature is fifiits. the O(€*?) part of Eq.(A3a) for hy(x,y) in terms of Fourier
modes of the variablg along the lines of Sec. IV B and use
the result to evaluat¥y(x,y). It then turns out that the first

0= €4 a,hg+ dho + deodxho)] + 0(e),  (A3a)

ACKNOWLEDGMENTS term inX, implies thate; would have to grow without bound
We gratefully acknowledge helpful discussions with JanWith increasing system sizsecular terny if the O(e) terms
Wilhelm during the early stages of this work. alone were required to cancel each other. However, the non-

linear term can also be balanced by 1Bée*®) term after
choosinga=1/2;i.e., the exponent is fixed such that the
APPENDIX: METHOD OF MULTIPLE SCALES expansion coefficientp; remains bounded.The equation

fixin then reads
Given the separation of the length sca@s' and \ ob- XING ¢1

served in Sec. V A, it is natural to apply the method of mul- 2 - -
tiple scaleg[21] to find an approximate closed equation for Fepr(X,y) + Bpo(y) = Xo(X,Y). (A5)

the slow variation of the tensiop(s, 7) over the length scale o pajance of the secular terms implies the balance of the

\ that is independent of the detailed “microscopic” ﬂ“Ct“a'averages of their derivatives that appear in @), wherex
tions on the scal®™*. To this end, we introduce rapidly and averaging is defined by

a slowly varying arclength coordinates=s and y=se®,

respectively, where the exponeat>0 will be fixed later. ' dx
Any function g(s) depending on the arclengghis now con- (g(X, YY) = Iimf —a(x,y). (AB)
sidered to depend on both variabigs) — g(x,y), wherex I=w=Jo |
andy are treated as independent. The original arclength de- o
rivative then becomes Note thatx averages of terms that are total derivatives of
bounded(nonsecular quantities with respect t® all vanish
el 7 = Oylry + € Iyl - (A1)  upon formally taking the coarse-graining length « in Eq.

The dynamic variables, and f=«¢ in the equations of (AB), s0 that we are left with

motion Eqgs.(15) are assumed to have a uniform power ex-
pansion(the expansion coefficients in each order have to be “The small parametes®= €' appearing here is the same as in the
bounded[21]) in terms of the small parameter length scale separation E@O) observed in Sec. V A.
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2 interest this was already established in Sec. V B. Therfore,
af,g“oo(y) = 2(3(ho)I)(y). (A7)  we can identify Eq.(A7) with the coarse-grained equation
2 Eg. (65). Relating corresponding quantitiegy(y) which de-
For the finite rod under consideration, the lirhit-c is not ~ pends only on the slow variabjeis recognized as the former
to be taken literally though. Rather, the average in @§) coarse-grained tensiap(s), while thex-averaged expansion
is required to become independentl ab leading order ine  coefficient(e;(X,y))x=@1(y) corresponds to the time deriva-
for | much smaller than the system size. For the quantities dfive J,¢(s) of the coarse-grained stored length.
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