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We present a comprehensive theoretical analysis of the stress relaxation in a multiply but weakly buckled
incompressible rod in a viscous solvent. For the bulk, two interesting parameter regimes of generic self-similar
intermediate asymptotics are distinguished, which give rise to approximate and exact power-law solutions,
respectively. For the case of open boundary conditions the corresponding nontrivial boundary-layer scenarios
are derived by a multiple-scale perturbation(“adiabatic”) method. Our results compare well with—and provide
the theoretical explanation for—previous results from numerical simulations, and they suggest directions for
further fruitful numerical and experimental investigations.
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I. INTRODUCTION

Any child that has played with a ruler during a boring
school lesson has experienced the diverting physics of the
paradigm of a mechanical instability: the sudden buckling of
a slender rod under a compressive axial load of weightf
surpassing the first critical Euler forcef1. This so called Eu-
ler buckling instability is not only a well-known example of
a simple mechanical system exhibiting nontrivial elastic be-
havior, historically it is also associated with the beginning of
bifurcation theory. Its thorough understanding can temper
our intuition as to what should be expected or searched after
in more complicated situations involving elastic instabilities
or bifurcations in general. Intriguingly, it has also proved to
be of major importance for the equilibrium thermodynamic
properties of stiff biopolymers[1,2], such as actin or col-
lagen, which are largely responsible for the elastic properties
of biological tissue. Recently the dynamics of the Euler in-
stability has also gained considerable interest as one of the
most elementary elastohydrodynamic problems[3]. The lat-
ter are commonly encountered in the derivation of macro-
scopic constitutive models for soft, viscoelastic materials,
i.e., materials that show a mixed elastic and viscous behav-
ior. For major examples of this important type of condensed
matter, ranging from polymer solutions and gels to biological
cells, the complicated dynamic response can indeed be attrib-
uted to the elastohydrodynamics of some low-dimensional
mesoscale structures[4–6]. Thus the focus has shifted away
from the classical treatment of the Euler instability[7],
which is motivated by typical engineering problems such as
the stability of a mechanical beam under compressive loads,
to thermally undulated rods. A crucial difference between the
two situations is that usually only the first few Euler modes
matter in the former, whereas(infinitely) many modes are
excited in the latter.

In the present contribution we are interested in determin-
istic (“athermal”) dynamics under circumstances where
many modes contribute. Despite this restriction, our methods
and major results are also pertinent to certain “thermal”

problems. A telling example is provided by the successful
application of scaling arguments based on deterministic dy-
namics to rationalize the nonequilibrium longitudinal re-
sponse of a semiflexible polymer[8–10]. More precisely, we
will consider here the deterministic overdamped relaxation
of the tension in an incompressible buckled rod as schemati-
cally depicted in Fig. 1. Initially, the contour is strongly
wrinkled on short length scales, causing the end-to-end dis-
tanceRst=0d&L to slightly deviate from the contour length
L. It then evolves in time toward a completely straight final
stateRst→`d=L by transferring contour length “stored” in
the high Euler modes to successively lower modes with
fewer and fewer nodes. The elastic energy stored in the com-
pressed initial state is thereby dissipated to the solvent. The
athermal case already exhibits a very rich phenomenology
(emergence of a characteristic wavelength, exact and ap-
proximate power-law relaxation, helix formation, staircase
relaxation), only some of which has previously been ob-
served in numerical simulations[11,12]. These earlier studies
also provided scaling arguments rationalizing some of the
observations on the basis of a mathematical description
adapted to the simulation technique, which involves a com-
pressible rod. In contrast, our analysis starts from the math-

FIG. 1. A typical scenario of a deterministically relaxing buck-
led rod. Initially the rod is wrinkled on small wavelengths. In the
course of time undulations are pushed out at the free ends and the
typical wavelength of the undulations grows.
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ematical minimal model1 for the various phenomena of in-
terest outlined above, which is a contourr ss,td parametrized
by its arc lengths=0, . . . ,L and subject to an energetic cost

H0fr ssdg =
k

2
E

0

L

dsr 9ssd2 s1d

for bending that is proportional to the square of the local
curvaturer 9ssd (where we have introduced the shorthand no-
tation r 8;]r /]s). The local incompressibility of the contour
has to be imposed onto Eq.(1) as an external rigid constraint

r 8ssd2 = 1, s2d

which considerably complicates the calculations compared to
classical polymer models with fluctuating contour length
[13]. For finite temperatures, this model is generally known
as the Kratky-Porod model or wormlike-chain model in the
polymer literature[13,14]. However, as we said, here we
focus on its deterministic(zero-temperature) dynamics, ex-
clusively. The contour is embedded into a highly viscous
solvent of viscosityh, and in the low-Reynolds-number and
free-draining limit one approximates the viscous friction(per
length) of a slender rod of thicknessa!L by two coeffi-
cientsz'=2zi <4ph / lnsL /ad for transverse and longitudinal
motion relative to the solvent, respectively[13].

We emphasize that a crucial ingredient implicit in related
earlier studies is the weakly-bending-rod limit. It asserts that
the local slope of the contour is small. This condition has to
be met for a large negative line tension(pressure) f @ f1 to
build up along the contour.(Formally f plays the role of a
Lagrange multiplier enforcing the incompressibility con-
straint ontoH0.) Moreover, the condition of weak bending
naturally provides a small parameter

e ; 1 − Rst = 0d/L ! 1, s3d

the fraction of the contour length initially “stored” in the
contour undulations. Technically, the existence of this small
parameter is vital for the analytical approach to the problem.
It enables us to establish two independent mechanisms be-
hind the ubiquitous[11,12] power-law temporal decay of the
tension

fstd ~ t−1/2. s4d

We will show that Eq.(4) generically emerges as a conse-
quence of two types of initial conditions(referred to as type
I and type II). It will turn out that in the first case the struc-
tural relaxation proceeds hand in hand with tension relax-
ation, whereas in the second case it occurs essentially stress-
free, after the tension has already relaxed. In both cases, we
will also derive the associated growth laws for the boundary
layers near free ends and analyze their contribution to the

relaxation of the rod. The required adiabatic method of
slowly varying tension, which we develop in Sec. V B and in
the Appendix, can be generalized to stochastic dynamics[15]
and thus provides a conceptional basis for a unifying descrip-
tion of tension propagation in slender rods. The scenarios
established for the tension relaxation entail corresponding
power-law scenarios for a number of observables such as the
dissipated energy or the growth of the radius of gyration or
end-to-end distance, which will be compared to simulations
where available.

The remainder is organized as follows. In the next section,
we further specify the problem and give some intuitive argu-
ments as to its mathematical structure and the expected dy-
namics. For those readers who happen to be mainly inter-
ested in a qualitative overview of the rich deterministic
dynamics of the Euler instability, we moreover give a com-
prehensive qualitative and phenomenological discussion of
the results. Section II can also be read as an extensive intro-
duction to and outline of the detailed calculations and results
reported in the subsequent sections and in the Appendix.

II. QUALITATIVE DISCUSSION

The classical analysis[7] of the statics of beam buckling
determines the onset of buckling from a linear stability
analysis. More precisely, after decomposing the rod contour
into discrete Fourier modes with amplitudesan, it yields the
associated critical forcesfn=kspn/Ld2 (here for the case of
hinged ends) necessary to excite these modes. If only the
mode n is excited the corresponding bending energy as a
function of the relative compressione follow as H0sed
= fnLe in the weakly bending limit. One may hope that also
the dynamicsof the instability should be accessible to an
essentially linear calculation for a weakly bending rod, al-
though the problem outlined above is intrinsically nonlinear.
We will show below that this is indeed the case as long as the
tension along the rod is sufficiently uniform. Then the dy-
namics can be understood as arising from a linear superpo-
sition of relaxing eigenmodes that are onlyglobally coupled
by the incompressibility constraint Eq.(2). It restrains expo-
nential growth of the unstable modes by selecting the inter-
mediate asymptotic power-law relaxation Eq.(4) of the ten-
sion fstd.

Although our mathematical analysis applies more gener-
ally, it is instructive to take the example of a free rod with a
special initial condition as a starting point; namely a contour
that is wrinkled at short scales with wrinkles that are statis-
tically uniform along the whole contour. Obviously the re-
laxation at the free ends will not be the same as in the bulk,
but for the time being we concentrate on the bulk behavior.
Take an arbitrarily chosen short segment of lengthl far away
from the rod ends. To fully relax its bending energy it would
have to release its stored length%0l <el and thus to expand.
To this end, the sections of the rod to both of its sides would
have to be pushed out. Since these were assumed to be very
long and almost straight, so that their displacement is subject
to substantial viscous friction from the embedding fluid, this
is virtually impossible for a considerable period of time.
(Note that the assumption of an almost straight contour is

1In contrast to related studies on two-dimensional membranes[4],
where a finite “backbone” compressibility is in fact a necessary
ingredient, it does not play a vital role for the various phenomena of
interest in the present contribution. However, we note that in the
simulation studies in Refs.[11,12], it provided a convenient means
for the preparation of rods in an excited state giving rise to the
“cascading scenario” discussed in Sec. IV C.
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crucial at this point.) The chosen initial condition therefore
entails that a uniform axial pressuref much larger than the
critical pressuref1 for the ground state builds up along the
contour. For a first analysis we may therefore imagine the
chosen bulk section of the rod to be caged between two
immobile boundaries of distancer =s1−%0dl that preserves
its total stored length

%0l = l − r = const, s5d

as depicted in Fig. 2 and analyzed in Sec. IV. The initial
pressurefst=0d within the section(which is the negative of
the force exerted onto the boundaries) can however still relax
by transferring stored length from high modes to low modes.
For the sake of the argument, we imagine the initial confor-
mation to have essentially the form of a sine function with a
very small wavelength. In other words, the mode amplitudes
ans0d will be peaked around someN@1 in mode space, say,
all an,N are extremely small and allan.N vanish identically.
Then the initial pressurefN is much higher than the final
(ground state) pressuref1. It will therefore relax by transfer-
ring the conserved stored length%0l from the Nth mode to
successively lower modes, thereby dissipating stored elastic
energy to the solvent. Since lower modes have longer relax-
ation times they evolve more slowly, and the transfer of
stored length happens via acascade in mode spaceinvolving
all intermediate modes. It turns out that the initial localiza-
tion of stored length and bending energy in mode space is
not lost. The numerical solution in Sec. IV C will explicitly
confirm that under such conditions the transfer actually oc-
curs in a discontinuous jump mode leading to a staircase
relaxation of the line tensionfstd and the corresponding con-
finement force around the power law Eq.(4). Further, we
will demonstrate analytically that the localization in mode
space emerges asymptotically for certain initial conditions
(notably those to be classified as type I below). We will
discuss in detail how the global coupling of the modes via
the constraint for the end-to-end distancer selects up to loga-
rithmic corrections the power-law decay Eq.(4) as interme-
diate asymptotics. It will be shown that the localization in
mode space consecutively sharpens with time, thereby estab-
lishing the above mentioned staircase relaxation as a generic
long-time feature for those initial conditions. The mechanism
behind the localization in mode space will be seen to be
formally analogous to the onset of phase separation after a
deep quench, i.e., to the early stages of spinodal decomposi-
tion [16,17].

A more thorough analysis of the initial conditions giving
rise to power-law relaxation in the bulk will be performed in
Secs. IV D and IV E. The key observation is that apart from
the just mentioned cascading in mode space, there is another
mechanism leading to similarity solutionsexactly obeying
Eq. (4). Contrary to the cascading solutions, where Eq.(4)
can be understood as the immediate consequence of the ap-
pearance of a time-dependent characteristic wavelength

Q−1std ~ t1/4 s6d

that visibly dominates the contour undulations, no palpable
dominant length scale(and hence no generic staircase relax-
ation) develops for this second class of solutions. In fact,
hardly any conformational relaxation is noticeable during
tension relaxation, and the structural dynamics is predomi-
nantly stress-free in this case. Dynamic scaling simply arises
as a consequence of theself-affine geometryof the initial
conditions characterized by a power-law distribution of the
initial mode amplitudesans0d~n−b/2−1 with a “roughness ex-
ponent” 1,b,3. Among these is the particularly interest-
ing “thermally” undulated contour(b=2, the dynamics still
supposed to be athermal). By restricting the discussion to
power-law initial conditions with a mode cutoff to respect
Eq. (3), a precise classification of initial conditions is pos-
sible. Power-law initial conditions withb,1 are then said to
be of type I (they give rise to “cascading” solutions), and
those with 1,b,3 of type II (they give rise to exact simi-
larity solutions). The caseb.3 can be dismissed, because it
amounts to situations where essentially all stored length is
initially contained in the lowest mode. The discussion in
Secs. IV C and IV D will eventually allow us to conclude in
Sec. IV E that allgeneric2 initial conditions invariably give
rise to the same universal power-law relaxation Eq.(4) of the
force but with variable degree of localization in mode space,
as summarized in Fig. 7 below.

While the discussion so far holds anywhere in the bulk of
the rod, where the longitudinal expansion can essentially be
neglected on the appropriate logarithmic time scale, we will
in the remainder also address the slightly different situation
near the free ends(Sec. V). Surprisingly, it can be analyzed
along the same lines as the bulk by virtue of a length scale
separation innate to the weakly bending limit. The major
variation of the tension, namely, from its bulk value to zero
at the open boundaries, occurs within a(time-dependent)
boundary layerof lengthlstd that is at any time much larger
than the characteristic length scaleQ−1std of the dynamically
most active contour undulations. This fortunate situation is
schematically depicted in Fig. 9 below. It allows the deriva-
tion of closed equations for the(smooth) coarse-grained ten-
sion profile by means of an adiabatic approximation that in-
tegrates out the contingent short-wavelength fluctuations up

2Although our discussion is qualitatively valid also for initial con-
ditions that deviate from ideal power-law distributions, we want to
discard as “nongeneric” those initial conditions where one either
starts essentially in the ground statesb.3d or has multiple peaks,
oscillations, etc. in the mode spectrum. This attitude is commonly
adopted in related studies[8,9].

FIG. 2. Relaxation in the bulk. The situation is essentially the
same as for a longitudinally confined rod. The pressurefstd exerted
onto the confining walls exhibits the power-law decay Eq.(4).
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to a coarse-graining length scalelstd intermediate between
Q−1std and lstd. The underlying idea goes back to Ref.[8].
As an aside, we point out a subtle technical difference be-
tween the bulk and the boundary-layer problem, here. While
the former is accessible to an ordinary(regular) perturbative
approach, the adiabatic approach to the latter amounts to a
multiple-scale perturbation scheme. The additional effort is
rewarded by the possibility to generalize the approach to
arbitrary situations that exhibit a slow(compared tol) “sys-
tematic” variation of the line tension and stored length along
the contour. The corresponding formalism is developed in
Sec. V B and the Appendix and enables us to derive the
central Eq.(65). It can be interpreted as a continuity equation
for the (coarse-grained) local stored length, which general-
izes Eq.(5) to situations with spatially varying tensionfssd.
The application to the situation near the free ends allows us
to infer a nontrivial dynamic scaling law for the boundary
layer. Its widthl is found to grow according to

lstd ~ td. s7d

The exponentd characterizing this growth depends on the
degree of localization of the stored length in mode space, so
that one again has to distinguish between type I and type II
initial conditions. For type I initial conditions we findd
=1/4; hence the boundary-layer width is proportional to
(though numerically much larger than) the wavelength of the
dominant mode, i.e.,l~Q−1. It thus does not represent a new
characteristic dynamic length scale itself. As we noticed for
the bulk, tension propagation and contour relaxation proceed
in parallel. Asymptotically the rod contour can be decom-
posed into a bulk region with homogeneous line tension
fssd=const and two virtually stretched end sections where
the tension has relaxed to the linear profilefssd~hs charac-
teristic of a rigid rod subject to a viscous friction force.
These predictions compare well with the available numerical
simulations[12]. In contrast, for type II initial conditions,
which have not yet been studied in simulations,d=s3
−bd /8 is predicted to depend on the roughness exponentb,
so thatl provides a new(b-dependent) characteristic dy-
namic length scale in addition toQ−1. The vanishing ofd for
b→3 heralds the(trivial) limit of instant equilibration. For
1,b,3 tension propagation precedes contour relaxation, so
that most of the contour relaxation occurs under vanishing
tension. Such curious dependence of relaxation behavior for
type II initial conditions on the value of the exponentb was
previously noticed in a different context[8,9]. As an impor-
tant special case, we obtain the exponentd=1/8 for “ther-
mal” initial conditions, which coincides with the correspond-
ing exponent for the nonequilibrium thermodynamic tension
propagation known from linear response calculations[5,18].

The divergence of tension decay(or propagation) and
conformational relaxation for type II initial conditions raises
the question of how under these circumstances tension
propagation can be observed in experiments or simulations.
In Sec. VI we establish that the growth velocity of the lon-
gitudinal componentRGi of the radius of gyration of a
weakly bending rod is generally proportional to the tension
fstd in the “bulk” of the polymer,

]tRGistd ~ fstd. s8d

ThusRGi represents a suitable observable to directly monitor
the decay law Eq.(4) for the tensionfstd. This said,RGi

obviously should not be regarded as a genuine measure of
the conformational dynamics. The latter can instead be ac-
cessed via measuring the changedRistd of the longitudinal
component of the end-to-end distance. Because of its sensi-
tivity to the boundary-layer widthl, it portrays the richer
conformational dynamics in its power-law growth

dRistd ~ tg. s9d

For type I initial conditions,dRi is just a (small) constant
fraction of the boundary layer width, i.e.,dRi ~l~Q−1, so
thatg=1/4. On theother hand, for type II initial conditions,
Q−1, l, anddRi all constitute different dynamic length scales,
and we find a crossover fromg=s1+bd /8=d+sb−1d /4 for
short times tog=sb−1d /4 for long times.

The above qualitative discussion has hopefully convinced
the reader that the dynamics of the mechanical Euler buck-
ling instability exhibits a rich and interesting phenomenology
that deserves a more detailed mathematical analysis. This is
what the following sections intend to provide.

III. EQUATIONS OF MOTION

As motivated in the Introduction, the axial incompress-
ibility can lead to a large negative tension(pressure) in a
relaxing rod. This crucial feature appears only for almost
straight rods or straight rod sections, for which the fractione
of initially stored length provides a small parameter. We
therefore concentrate on the geometry of an almost straight
rod and introduce displacement variables that describe the
deviation from the straight contour, as depicted in Fig. 3. We
parametrize the contour byr =sr ' ,s−r idT, wherer 'ssd is the
two-dimensional transverse displacement vector at arclength
s and r issd−r is0d is the contour length stored in undulations
within the rod sections0,sd.

The functionr i8ss,td can be interpreted as the fraction of
the contour length that islocally stored in the transverse
undulations. As it turns out to be the density of a locally
conserved quantity it will have central importance in our
analysis. For convenience of notation we reserve the variable
%ss,td for it,

%ss,td ; r i8ss,td. s10d

The spatial average

FIG. 3. The parameterization of the contourr ssd=sr ' ,s−r idT by
transverse and longitudinal displacement variablesr' and r i, re-
spectively. Note that the displacements vanish for the straight
contour.
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E
0

L ds

L
%ss,0d = e s11d

relates% to the small parametere, defined in Eq.(3). The
limit e→0 with %ss,0d /e fixed is called theweakly bending
limit because it guarantees an almost straight contour,

%ss,td = Osed ! 1 sweakly bending limitd. s12d

Equation(12) forms the basis of the perturbation theory de-
veloped below.

The inextensibility of the rod Eq.(2) couples transverse
and longitudinal coordinates. Resolving it forr i8 and expand-
ing the square root, it reads

rss,td = r i8 =
1

2
r '8

2 + Osr'8
4d. s13d

From Eq.(12), r'8 is of orderOse1/2d and the terms neglected
in Eq. (13) are of orderOse2d.

We now turn to the derivation of the equations of motion
in terms ofr ' and r i. In the case of low Reynolds numbers
the dynamics is determined by the balance of elastic, driving,
and friction forces. The elastic force derives from

H = H0 −
1

2
E

0

L

dsfr 82 s14d

via functional differentiation[19]. The Lagrange multiplier
function fss,td is necessary to preserve the arclength con-
straint Eq.(2). It can be interpreted as a(negative) local line
tension.

For elongated slender bodies like thin rods or stiff poly-
mers, it is well justified to assume a local anisotropic friction
force (free-draining limit). The anisotropy is due to the fact
that the friction coefficientz'=2zi (per unit length) of a stiff
rod moving perpendicular to its long axis is twice as large as
that for longitudinal motion. It can be taken into account by
decomposing the contour velocity]tr into its components
parallel and perpendicular to the local tangentr 8 [20]. The
force balance can then be written in the formfzir 8r 8+z's1
−r 8r 8dg ·]tr =−dH /dr . To ordere, it takes the form

z']tr ' = − kr '-8 − sfr '8 d8 s15ad

zi]tr i − sz' − zidr '8 ]tr ' = − kr i-8 + f8 − sfr i8d8. s15bd

The local anisotropy of the friction generates additional
terms of orderOse3/2d that are neglected here. For a freely
relaxing rod with given initial conditions, the equations of
motion Eqs.(15) have to be solved while respecting the local
constraint Eq.(13) and the boundary conditions of zero ten-
sion, torque, and force at the ends,

uf u0,L = ur 9u0,L = ur-u0,L = 0. s16d

IV. RELAXATION OF A CONFINED WEAKLY
BENDING ROD

A. The leading order in e

In the course of our qualitative discussion in Sec. II we
showed that the key problem for understanding the bulk of a

relaxing rod is the relaxation of a rod section of lengthl
!L confined between two immobile walls, as illustrated in
Fig. 2. The weakly bending rod section is supposed to be
initially perturbed by small wrinkles of length much smaller
than l (excited state). Owing to the undulations, the end-to-
end distancer is smaller thanl, by an amount%stdl, where

%std ;
1

l
E

0

l

ds%ss,td =
r isld − r is0d

l
s17d

is the spatial average of the stored length density%ss,td in-
troduced in Eq.(10). With the help of Eq.(13), we can ex-
press%std in terms of the transverse displacements,

%stdl =
1

2
E

0

l

dsr i8
2ss,td + Ose2d. s18d

By exerting a compressing forcefstd on the rod ends, the
walls keep the rod section from expanding and the total
stored length%stdl remains constant,

D%std ; %std − %0 = 0, s19d

where%0=%s0d=Osed is the contour length initially stored in
the rod section. Our question is, how does such an “excited”
rod relax to the ground state, in which the contour has only
one buckle of wavelengthl (as depicted in Fig. 2).

In the present section we will apply regular perturbation
theory to address this problem, i.e., all derivations are under-
stood to holdto leading order ine. This allows us to neglect
the spatial dependence of the tension. The longitudinal equa-
tion of motion Eq.(15b) together with Eq.(12) imply that

f8 = Osed. s20d

Therefore spatial variations of the tension are small in the
limit e!1 and the transverse equation of motion Eq.(15a) is
to leading orderOse1/2d given by

z']tr ' = − kr '-8 − fstdr '9 , s21d

where merely the spatial average

fstd ;
1

l
E

0

l

dsfss,td s22d

of the force fss,td enters. The longitudinal force that the
walls exert on the segment equalsf up to higher-order cor-
rections. Although Eq.(21) is linear for a given force history,
the global constraint of fixed end-to-end distance Eq.(19)
makes the tension a functional of the contourr 'ss,td. The
resulting problem comprised by Eqs.(19) and (21) is there-
fore still highly nonlinear and in general not analytically
tractable. Progress can be made, however, for generic cases
(see footnote 2), as will be shown in the following subsec-
tions. We will also present exact numerical solutions in order
to illustrate the results.

B. Amplification factor

We analyze the problem in two steps. For a given force
history fstd Eq. (21) is linear inr '. Therefore, we can deter-

OVERDAMPED STRESS RELAXATION IN BUCKLED RODS PHYSICAL REVIEW E70, 031802(2004)

031802-5



mine the stored length as a function of the tension via Eq.
(18). The second(in general nontrivial) task is then to invert
this relation and to determine the correct force history that
obeys Eq.(19), i.e., keeps the end-to-end distancer constant.

We decompose the contour of the “caged” section of
length l (Fig. 2) into sine functions,

r 'ss,td = Î2/lo
n

anstdsinsqnsd, s23d

whereqn=np / l is the wave number corresponding to thenth
mode, and for definiteness hinged ends have been assumed
for the boundary conditions.(The same boundary conditions
have been used in molecular dynamics simulations[11].)
Then, from Eq.(18) the stored length can be written as

%stdl =
1

2o
n

qn
2an

2 ; o
n

%nl . s24d

The elements%nstdl of the last sum can be interpreted as the
contour length stored in moden at time t. We obtain a dy-
namical equation for%nstd by first inserting the Fourier de-
composition Eq.(23) into Eq. (21) and then multiplying the
resulting equation for the mode amplitudes byanqn

2/ s2ld:

]t%n = 2f− qn
4 + wstdqn

2g%n. s25d

Here we introduced a rescaled tensionw; f /k and timet
;kt /z', which have units ofslengthd−2 and slengthd4, re-
spectively. Now, all variables of our problem represent pow-
ers of lengths. The dispersion relation Eq.(25) exhibits a
stable and an unstable band of modes, separated by the wave
numberÎwstd. Modes with larger wave numbers shrink ex-
ponentially, whereas the others grow exponentially as a con-
sequence of the competition of therestoring bending force
(dominating at large wave numbers) and thedriving force
(dominating at small wave numbers). This is formally analo-
gous to spinodal decomposition. In this context Eq.(25) with
k measuring the surface tension andf the curvature of the
local free energy at the central maximum is known as the
Cahn-Hillard equation[16].

After dividing both sides by%n, Eq. (25) can immediately
be integrated:

%nstd = %n
0Asqn,td, s26d

with the initial values%n
0, and an “amplification factor”

Asq,td ; expf2q2sFstd − q2tdg. s27d

By F we denote the time integral over the tension

Fstd ; E
0

t

dt̃wst̃d. s28d

The structure of the functionAsq,td becomes more transpar-
ent upon introducing the characteristic wave numberQstd
corresponding to the position of its maximum,

Q2std ;
Fstd
2t

, s29d

which is related towstd by

w = ]tF = 2]tstQ2d. s30d

Note that the wave numberQstd that has grown most
strongly up to timet depends on the force historywst̃,td.
With this definition, Eq.(27) is rewritten as

Asq,td = expf2tq2s2Q2 − q2dg s31ad

=exph2asq/Qd2f2 − sq/Qd2gj, s31bd

where we introduced the dimensionless parameter

astd ; tQ4std. s32d

The amplification factorAsq,td describes how the stored
length is rearranged for a given force history. In general
wave numbers larger thanÎ2Q are dampedsA,1d and wave
numbers smaller thanÎ2Q are amplifiedsA.1d. Further, the
amplification factor depends very sensitively on the param-
eter a defined in Eq.(32). For a@1 the functionAsq,td
develops a strong peak aroundq=Q with a heighte2a and a
relative widthDQ/Q of about3

DQ/Q = s2Îad−1, s33d

as shown in Fig. 4(a). Hence, fora@1 it can be idealized as
e2aDQdsq−Qd, whereas fora,1, which is illustrated in Fig.
4(b), the function resembles more the step functionQsÎ2Q
−qd.

We now turn to the second step of determining the force
history wstd that makes the dynamics compatible with the
constraint of fixed end-to-end distance Eq.(19). This is
achieved by inserting Eqs.(24), (26), and(31a) into Eq.(19),

0 = D%std s34ad

=o
n

%n
0fAsqn,td − 1g s34bd

=o
n

%n
0
„exph2tqn

2f2Q2std − qn
2gj − 1…. s34cd

For a given timet Eq. (34c) is an implicit equation for the
characteristic wave numberQstd which by its definition Eq.
(29) is related toFstd, the time integral over the tension. The

3We choseDQ somewhat arbitrarily to be twice the standard de-
viation of the peak.DQ−1 can be interpreted as a coherence length
over which the contour of the rod can be considered to be a pure
sinusoidal.

FIG. 4. The sensitive dependence ofAsq,td, given by Eq.(31b),
on the parametera=tQ4. For a=2 the amplification factor takes
the form of a pronounced peak(a) whereas fora=0.15 it resembles
a step function(b).
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remainder of Sec. IV is devoted to the analysis of the time
dependence of the solutionsQstd of Eq. (34c).

First of all, we note that numerically it is straightforward
to solve the implicit equation for any initial condition%n

0.
This allows us to illustrate a key feature of the relaxation
process right away, namely, the continuous transfer of stored
length from small to large scales. Figure 5 shows the mode-
number-dependent fraction of stored length%nstd at three
successive timest1,t2,t3 for the initial condition%nøN

0

=%0/N=const and%n.N
0 =0. For this particular choice of ini-

tial conditions%nstd can up to a constant prefactor be iden-
tified with Asqn,td. The dark gray area represents the differ-
ence between the stored lengths at times 0 and timet3. It has
two natural subdivisionsD%+.0 andD%−,0, adding up to
zero by virtue of the constraint Eq.(34b). Formally, we de-
fine by

D%−std ; o
n=Nc

`

%n
0fAsqn,td − 1g , 0, s35d

with Nc being the smallestn with qn.Î2Qstd, the stored
length that has been “destroyed” up to timet. Note that each
element of the sum Eq.(35) is negative. Similarly,D%+std
represents the stored length that has been “generated” in the
modes with wave numbers belowÎ2Qstd, i.e., we define

D%+std ; o
n=0

Nc−1

%n
0fAsqn,td − 1g . 0. s36d

Since the total change in stored lengthD% must vanish,

D%std ; D%+std + D%−std = 0, s37d

we can imagine the relaxation process as atransferof stored
length uD%−stdu from scales smaller thansÎ2Qd−1 to scales

larger thansÎ2Qd−1 in time t. Due to the form of the ampli-
fication function(see Fig. 4) the mode amplitudes with wave
number close toQstd show the largest increase up to timet.
In the present case this results in the formation of a pro-
nounced peak aroundQst3d although the initial excitation
was “flat” up to the cutoff.

It will turn out in the next section that a large peak in the
amplification factor implies power-law evolution of the char-
acteristic wave numberQstd and thus of the tensionwstd.
Whether or not the mode spectrum develops a pronounced
peak as in the above example depends on the initial condi-
tions. Figure 5 suggests that a strong peak is present at time
t3, because the dark gray areasD%+, −D%− are much larger
then the light gray area. In other words, the stored length will
be strongly localized aroundQstd at time t, if the relaxed
stored lengthuD%−u=D%+ is much larger than the contour
length that was initially stored in the interval of widthDQ
around the wave numberQ. To estimate the former, we first
note thatAsq,td decays exponentially to zero forq.Î2Q, so
that we simply replace it by zero in Eq.(35). Then, because
many modes contribute to the remaining sum, we take the
continuum limit in mode space according to

%0sq = qnd ;
%n

0

p/l
, s38d

so that we obtain

D%− < −E
Î2Q

`

dq%0sqd. s39d

The amount of contour length initially stored aroundQ can
be estimated by the initial amplitude atQ, %0sQd, multiplied
by the width of the peakDQ. Upon comparing%0sQdDQ
with D%− we obtain the criterion

E
Î2Q

`

dq%0sqd @ %0sQdDQ ⇔ peak inAsq,td, s40d

to decide whether a peak is expected for a given value of
Qstd.

Assuming condition Eq.(40) to hold, we will show in the
next section howapproximatepower-law relaxation of the
dominant wave numberQstd and of the tensionwstd
emerges. In Sec. IV D we will see thatexactpower-law so-
lutions of Eq. (34c) moreover arise from self-affine initial
conditions%0sqd~q−b with 1,b,3. It will turn out that a
complete classification of all generic(see footnote 2) relax-
ation scenarios in the bulk can be given in terms of the ex-
ponentb, characterizing the roughness of the initial contour.

C. Cascading of stored length

Provided that the condition Eq.(40) is satisfied at a timet
larger than some suitable short transient time, the relaxation
has accumulated most of the stored length%0 in the peak
aroundQstd. Undulations of wavelengthQ−1 visibly domi-
nate the rod contour. Furthermore, the sum Eq.(36) repre-
sentingD%+ is dominated by the modes aroundQstd, which
simplifies its evaluation significantly. Yet, one still has to
discriminate two limiting cases.

FIG. 5. The fraction%nstd=%n
0Asqn,td of contour length stored

in mode n versus the corresponding wave numberqn=np / l for
three successive timest3.t2.t1 and the particular initial condi-
tion %nøN

0 =const and%n.N
0 =0. The location of the maximumQstd

of Asq,td has been obtained upon solving the implicit equation
(34c) numerically. As explained in the main text the dark shaded
areasD%− andD%+ can be interpreted as stored length that has been
destroyed and generated during the relaxation, respectively. The
global constraint of fixed stored length requires their sum to vanish
identically, Eq.(37).
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1. Intermediate asymptotics

The peak of the amplification factor covers many modes,
i.e., the widthDQ of the amplification peak, as defined in Eq.
(33), is much larger than the mode spacingp / l, or

Ql @ 2pÎa. s41d

Then many modes contribute to both,D%− andD%+ and the
corresponding sums Eqs.(35) and(36) can be converted into
integrals, as has already been done in Eq.(39) for D%− to
obtain the criterion Eq.(40). The continuum limit forD%+
reads

D%+ < E
0

Î2Q

dq%0sqdhexpf2tq2s2Q2 − q2dg − 1j. s42d

Since by assumption, Eq.(40), the integrand in Eq.(42) has
a pronounced maximum, it can be evaluated by a saddle
point approximation, replacing it effectively by the area
DQ exps2ad under the amplification peakAsqd multiplied by
%0sQd,

D%+ < %0sQdDQ exps2ad. s43d

The conservation of the stored length, Eq.(37), implies

0 = D%std < %0sQdDQ exps2ad −E
Î2Q

`

dq%0sqd. s44d

Since the first term on the right-hand side of Eq.(44) de-
pends exponentially on the parametera, the latter is slaved
to be time independent up to logarithmic corrections,

a = const +Osln td. s45d

Recalling the definition ofa, Eqs.(32), and using Eq.(30),
one finds for the tension

wstd = Qstd2 ~ t−1/2, s46d

which proves Eqs.(4) and (6) up to logarithmic corrections
for the intermediate asymptotics emerging once Eq.(40) is
satisfied. While the peak position is thus migrating to lower
wave numbers according to the power lawQstd~t−1/4, its
width shrinks accordingly,DQ~t−1/4. Consequently, the
number of discrete modes under the amplification peak de-
creases.

2. Ultimate staircase relaxation

When DQ eventually becomes smaller than the mode
spacingp / l, the contour of the rod starts to be dominated by
the discrete wave numberqn! closest toQstd. Thus it is no
longer legitimate to approximateD%+ by an integral. On the
contrary, in the limit

Ql ! 2pÎa s47d

the sum in Eq.(36) should be replaced by the single domi-
nant element corresponding to the indexn!,

D%+ = %n!
0 expf2tqn!s2Q2 − qn!

2 dg. s48d

In contrast, the sumD%− representing the destroyed stored
length has contributions from many modes even in the limit

Eq. (47) and it can still be approximated by the integral Eq.
(39). The parity of created and destroyed stored lengths, Eq.
(37), now takes the form

%n!
0 expf2tqn!s2Q2 − qn!

2 dg < E
Î2Q

`

dq%0sqd. s49d

As below Eq.(44) we conclude that the exponent on the
left-hand side has to stay constant in time up to logarithmic
contributions. By using the definition ofQ, Eq. (29), this
implies that the tension is equal to the Euler force corre-
sponding to the moden!,

w < qn!
2 , s50d

as long asn! is indeed the dominant mode. In fact, the dis-
crete n! is a time-dependent quantity that evolves in steps
and approaches 1 in the final stage of the relaxation, which
corresponds to the first Euler buckling mode.

To illustrate the above discussion, Fig. 6 displays the(nor-
malized) line tensionwstd obtained from the numerical solu-
tion of the implicit Eq.(34c) for Qstd. The relaxation sce-
nario shown is characteristic of the dynamics for the class of
initial conditions satisfying the condition in Eq.(40). For
short times, one observes after a short transient period a
smooth intermediate asymptotic power-law behaviorwstd
,t−1/2, which for long times develops staircaselike oscilla-
tions with plateaus atwn=n2w1snPNd, in agreement with the
above derivation.

D. Exact similarity solutions

In addition to the cascading of stored length that is
strongly localized in mode space, there is a different mecha-
nism giving rise to the power law Eq.(4). This is revealed by
explicitly searching for similarity solutions of Eq.(34c) un-

FIG. 6. Typical tension relaxation of a rod with initial conditions
satisfying Eq.(40) from a numerical solution of Eq.(34c). As in the
example of Fig. 5 we chose the particular initial condition%nøN

0

=const and%n.N
0 =0. For two values ofN the graph displays the

tensionw versus timet in units of critical forcew1=sp / ld2 and the
typical relaxation timet0= l4, respectively. In the caseN=100 it is
seen that the intermediate asymptotic power laww~t1/2 is valid in
the time windowtN!t!t0, where tN;N−4t0 is the relaxation
time of the highest excited mode. The extreme caseN=1020 illus-
trates the asymptotic behavior of the staircase regime for largeN.
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der the condition that many modes contribute to the relax-
ation dynamics and the sums in Eq.(34c) can again be con-
verted into integrals. In contrast to the intermediate
asymptotic power-law solutions obtained in Sec. IV C, which
obeyeda=const only up to logarithmic corrections, solu-
tionsQstd of the continuum limit of the constraint Eq.(34c),

0 =E
l−1

`

dq%0sqdhexpf2tq2s2Q2 − q2dg − 1j, s51d

can be found thatexactlyobey

a ; Q4t =! const. s52d

Inserting the ansatz

wstd = Q2std = sa/td1/2 s53d

with a yet undetermined time-independent parametera into
Eq. (51) and changing variablesq→qsa /td1/4, we obtain

0 =E
t1/4/la1/4

`

dq%0Sqa1/4

t1/4 Dhexpf2as− q4 + 2q2dg − 1j.

s54d

This is mathematically equivalent to Eq.(34c) as long as the
integral is not sensitive to its(small) lower bound, so that the
latter can effectively be taken to be zero. Then, for the inte-
gral to be independent of time, the initial condition has to be
of the power-law form,

%0sqd = L1−bq−b, s55d

where the lengthL has to be introduced on dimensional
grounds. The numerical solutionsa=ab of Eq. (54) are de-
picted in Fig. 7 as a function ofb. As can be seen, the
roughness exponentb is not completely arbitrary. In fact, no
finite solutions fora exist outside the interval 1,b,3.

For 1,b,3, the ansatz Eq.(55) solves Eq.(54) exactly
in the limit that the lower bound tends to zero, or for times

t ! abl4. s56d

Then the initial conditions Eq.(55) parametrize a class of
power-law solutions(to our knowledge) not seen previously.
The algebraic decay law can in this case be attributed to the
self-affine geometry of the initial conformation. Note that the
weakly bending condition expressed in Eqs.(12) and (11)
requires

%0 < E
l−1

`

dq%0sqd =
sl/Ldb−1

b − 1
! 1, s57d

i.e.,L@ l for a rod section of lengthl. An important example
of these initial conditions is provided by the contour of a stiff
polymer in thermal equilibriumsb=2d [13,14], for which the
length 2L /p is identified as the persistence length of the
polymer, which indeed has to be much larger then the length
of the polymer in the weakly bending limit. The correspond-
ing amplification factorAsqd with ab=2<0.146 as a function
of q is shown in Fig. 4(b).

In contrast to the intermediate asymptotics discussed in
Sec. IV C, the dynamics for power-law initial conditions
with 1,b,3 is not necessarily governed by a characteristic
wave number that visibly dominates the contour undulations.
For ab&1 the amplification factor rather acts as a time-
dependent low-pass filter cutting off the mode amplitudes
with wave numbers larger thanÎ2Qstd. This is to be con-
trasted with the situation in Fig. 4(a), where the amplification
factor is strongly peaked aroundQstd. Only in the limit b
→1 do the self-affine initial conditions Eq.(55) satisfy the
condition Eq.(40) that guarantees a large peak in the ampli-
fication factor, thus giving way to the scenario described in
Sec. IV C, butwithout logarithmic corrections.

E. Classification of power-law initial conditions

The fact that the valuea=ab that solves Eq.(54) diverges
as b approaches 1 from above indicates an unphysical situ-
ation. The initially stored length in modes with large wave
numbers grows without bound and the integral over%0sqd
diverges. Hence forbø1 power-law initial conditions as in
Eq. (55) are well defined only with an upper cutoff, say, the
wave numberqN corresponding to the highest excited mode
with indexN. Furthermore, with Eq.(55) the weakly bending
condition now requiresqNL!1. Then, for timest such that
Qstd!qN, the initial conditions automatically satisfy the cri-
terion Eq.(40). Hence, after a transient time, power-law ini-
tial conditions with exponentsbø1 relax according to the
cascading scenario of Sec. IV C characterized by localization
in mode space.

We thus observe that the two distinct bulk-relaxation sce-
narios described in Secs. IV C and IV D are characteristic of
power-law initial conditions withb,1 and 1,b,3, re-
spectively. This suggests a classification of the typical relax-
ation dynamics according to the exponentb. Accordingly,
we classify initial conditions of the power-law form in Eq.
(55) as type I if b,1 and as type II if 1,b,3. Further

FIG. 7. The amplitudeÎab in the power law Eq.(53) for the
line tensionw in the bulk of a relaxing rod with power-law initial
conditions%0sqd~q−b. Forb,1 (type I initial conditions) an upper
cutoff is required to keep the stored length finite. The relaxation
then proceeds via the cascading of a localized peak in mode space,
as depicted in Fig. 4(a) and explained in Sec. IV C. Forb.3, the
rod is essentially in the ground state from the beginning. The inter-
val 1,b,3 of type II initial conditions comprises the exact simi-
larity solutions derived in Sec. IV D. Thermal initial conditions cor-
respond toab=2<0.146.
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support for the pertinence of this distinction will emerge in
the following. Both the conformational relaxation(see the
following paragraph) and the boundary relaxation(see Sec.
V) will be seen to be markedly different for type I and type
II initial conditions.

The caseb.3 can be dismissed for the following reason.
Upon expanding the integrand of Eq.(54) into a Taylor series
for small q, it is seen that forb.3 the integral would be
dominated by the lower bound, indicating the breakdown of
the continuum approximation. The sum in Eq.(34c) is then
dominated by its first term, the first Euler buckling mode.
This yields a tension of aboutw<w1~ l−2: A confined buck-
led rod with the initial condition Eq.(55) andb.3 is essen-
tially in the ground state from the beginning.

We have thus achieved a complete classification of the
possible relaxation scenarios for all generic initial conditions
(see footnote 2) for the key problem of a longitudinally con-
fined rod, which was previously studied in numerical simu-
lations [11]. The results are summarized in Fig. 7. The
power-law decay Eq.(4) of the tension emerges as a quite
universal feature of the problem, whereas the accompanying
conformational relaxation will now be shown to be funda-
mentally different for type I and type II initial conditions.

F. Conformational relaxation

For type I initial conditions the intermediate asymptotic
dynamics is completely governed by the characteristic wave-
length Q−1. The latter directly determines the tension and
visibly dominates the real-space image of the contour, so that
tension decay and conformational relaxation proceed hand in
hand. A markedly different scenario results for type II initial
conditions. To appreciate the difference, consider the repre-
sentative distributions of stored length in mode space for
type I and type II initial conditions as they have evolved after
time t (Fig. 8). The stored length that was initially distrib-
uted in the tailsqùÎ2Qstd has been accumulated around
Qstd. Due to the substantially different relative weight of
these tails in the initial conditions, the corresponding distri-
butions at timet look utterly different. While over a time
interval 16t the undulations dominating the real space image

of the contour will have doubled their wavelength under type
I conditions, the corresponding evolution ofQstd will have
hardly any noticeable consequences on the real-space image
of a type II contour, which is dominated by undulations of
much longer wavelengths that are practically stationary on
this time scale.

As we pointed out in the Introduction, the relaxation of a
laterally confined rod that was discussed in the present sec-
tion can also be considered an idealization of the situation in
the bulk of a long stiff rod withfree ends that was initially
under high pressure, which also has been simulated[12]. At
the free ends, the tensionwss,td has to vanish as a conse-
quence of the boundary conditions Eq.(16). In the following
we face the question of how it falls off between the bulk and
the ends.

V. THE RELAXATION FOR OPEN BOUNDARIES

In the present section and in the Appendix, we develop a
method to treat situations where the tension exhibits substan-
tial spatial variations along the rod. The basic idea is as
follows. The major variation of the tension, namely, from its
bulk value to zero at the open boundaries, occurs within a
(time-dependent) boundary layer of a yet unknown length
lstd. In the following paragraph we will motivate the crucial
length scale separation betweenlstd and Q−1std. It will al-
low us to apply our leading order results from Sec. IVlocally
on an intermediate scalelstd sQ−1! l !ld, over which the
tension does not change appreciably. This in turn will enable
us to derive closed equations for a suitably coarse-grained
tension profilewlss,td in Sec. V B. This adiabatic approxi-
mation will eventually be justified by a consistency check.
(Its precise relation to the regular perturbation scheme of
Sec. IV will be clarified at the end of Sec. V and in the
Appendix.) Our discussion of the boundary-layer problem
will parallel the discussion in Sec. IV in discerning again
type I and type II initial conditions. Thereby we will in par-
ticular recover for the bulk our earlier results, which were
based on the assumption of longitudinal confinement.

A. Length scale separation

Technically, to address spatial variations in the tension
profile, which could be discarded as of higher order ine in
the regular perturbation scheme of Sec. IV A, we need to
push the analysis beyond the leading order. In Sec. IV B we
have determined the time evolution of the transverse dis-
placementsr 'ss,td of a rod section of lengthl to leading
order in e. By inserting with the help of Eq.(13) the result
back into the(higher-order) equation of motion Eq.(15b) for
r i, we can iteratively estimate the order of magnitude of the
spatial variation of the tension, which is determined by the
nonlinear terms.

Note that the leading-order solution forr 'ss,td depends
on the force history of the particular rod section under con-
sideration, which enters via the characteristic wave number
Qstd. We recall from our discussion of the amplification fac-
tor in Sec. IV B thatÎ2Qstd acts as an effective ultraviolet

FIG. 8. The situation in mode space after timet for representa-
tive initial conditions of type I(b=0, a@1, cutoffqN@Q as in Fig.
5) and type II(thermal initial conditionsb=2) with the same total
stored length%0.
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cutoff for the contour undulations. From Eqs.(13) and (12),
we thus have for example

2r i-8 = sr '8
2d- ø Q3Osed. s58d

Time derivatives are estimated by recourse to Eq.(15a). Ap-
plying this reasoning to Eq.(15b) after differentiating with
respect to arclengths, one eventually finds

w9 ø Q4Osed s59d

for the order of magnitude of the tension variations. Gener-
alizing Qstd→Qss,td to allow for a slow spatial variation of
the characteristic wavelength, we can integrate Eq.(59) from
one end of the contour, wherew=0 andQ=0, toward the
bulk, wherew;w`=Q2;Q`

2. (Here and in the following,
we symbolically write “̀ ” to refer to regions deep in the
bulk.) SinceQøQ`, we can infer

Q`
2 = w` =E

0

l

dsE
0

s

dŝw9 ø Q`
4l2Osed

by integrating through the boundary layer of lengthlstd.
From this we read off a lower bound for the order of mag-
nitude ofl,

⇒slQ`d−1 ø Ose1/2d. s60d

For smalle→0, we thus have a strong length scale separa-
tion between the wavelengthQ`

−1 of the dynamically most
active contour undulations and the scalel of the substantial
tension variations, i.e.,l@Q`

−1. It allows us to define a
length lstd intermediate between the characteristic scales
Q`

−1std andlstd, so that

1 ! Q`l ! e−1/2. s61d

Figure 9 illustrates the relation between the various lengths.
An immediate consequence of the inequalities Eqs.(60) and
(61) is that we can imagine the free rod at any time as con-
sisting of rod sections of lengthl @Q`

−1, each of which is
subject to a uniform “average” tension. After specifying this
average we will be ready tolocally apply our results of Sec.
IV to the problem of a rod with free ends in the next sections.

B. Adiabatic approximation

The length scale separation observed in the previous sec-
tion suggests to look for a mathematical description of the

“substantial” variation of the tension on the scalel without
its complicated wiggling on the “microscale”Q`

−1, which is
at most of orderQ`

2Osed. The natural way to get rid of the
short-wavelength fluctuations without losing the substantial
part is to consider coarse-grained quantities that are averaged
over the intermediate scalel. More precisely, we define for
any arclength-dependent quantitygssd a corresponding
coarse-grained quantityglssd by

glssd ;
1

l
E

−l/2

l/2

dsgss+ sd. s62d

It will turn out that for the quantities of interest this average
is actually independentof l to leading order ine, if l obeys
the double inequality Eq.(61). For the tensionwss,td this
was already established in Sec. V A.

A closed equation for the coarse-grained tensionwl can
now be derived from the full equations of motion, Eqs.(15).
Upon integrating the longitudinal Eq.(15b) with respect to
the arclength and using the free boundary conditions Eq.
(16), we at first obtain an explicit equation for the spatially
varying tensionwss,td before coarse-graining,

wss,td = ẑE
0

s

ds̃]tr i − s1 − ẑdE
0

s

ds̃r '8 ]tr ' + r i-ssd

+ wss,tdr i8ssd. s63d

Here ẑ=zi /z'=1/2 is theratio between the transverse and
longitudinal friction coefficients. Using our knowledge about
the bulk we now show that only the first term on the right
hand side is able to produce a term of the order of the tension
w` in the bulk. Counting arclength derivatives in orders of
Q` in the spirit of Sec. V A,w` is estimated as of order
OsQ`

2d. The crucial fact thatÎ2Q` acts as a high-wave-
number cutoff for the contour fluctuations together with the
local constraint Eq.(13) implies that the last two terms are
OseQ`

2d and thus always small compared to the bulk tension
w`. The same reasoning can be applied to the second term on
the right-hand side after suitable partial integrations,

UE
0

s

ds̃r '8 ]tr 'U =
Eq. s15adUE

0

s

ds̃r '8 s− r '-8 − swr '8 d8dU
ø

w,w`

ur '8 r '-u + r '9
2 + w`r '8

2 = OseQ`
2d.

Consequently, the necessaryOsQ`
2d term on the right-hand

side of Eq.(63) must be the one depending on the longitu-
dinal velocity]tr i. It represents the pressure that is generated
in the rod by the outward motion of the relaxing boundary
layer. Differentiating Eq.(63) twice with respect to arclength
and integrating over time we can therefore write to leading
order

ẑ −1F9 = ẑ −1E
0

t

dt̂w9ss,t̂d = %ss,td − %ss,0d. s64d

Since we are interested in the long-wavelength fluctuations
of w, we average this equation over the lengthl and obtain

FIG. 9. The lengthl over which the tension increases toward
the bulk value is much larger than the characteristic lengthQ`

−1 of
the transverse undulations in the bulk, as expressed by the inequal-
ity in Eq. (60). The slowly varying partwlssd of the tension is
obtained upon averaging over the coarse-graining scalel that satis-
fies the condition in Eq.(61).
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ẑ−1Fl9ss,td = D%lss,td. s65d

The physical interpretation of this important result is that the
releaseD%l ;%lss,td−%lss,0d,0 of stored length corre-
sponds to a negative curvature in the time integrated tension
profile Fl9,0. Stored-length release acts as a source for spa-
tial variations of the time integrated tension. For increasing
arclength s we expect the tension to saturate,F9ss→`d
→0, corresponding to a conserved stored length in the bulk,
D%lss→`d=0, just as we argued throughout Sec. IV. In this
sense, Eq.(65) generalizes the conservation law Eq.(19) for
the bulk to the boundary layer. For the interested reader a
second, more formal derivation of Eq.(65) via the method of
multiple scales[21] is given in the Appendix.

In order to close Eq.(65) we need an expression for the
stored-length releaseD%l on the scalel as a function ofFl.
Here, we can simply refer back to Sec. IV B. There we have
dealt with one “coarse-graining element” of lengthl to lead-
ing order in e. We recall that a crucial ingredient of the
(ordinary) perturbation calculation in Sec. IV B was that we
could neglect spatial variations ofwss,td to leading order in
e. The length scale separation observed in Sec. V A shows
that we can neglect them on the scalel, which is much larger
than the characteristic wavelengthQ−1 of the dynamically
most active transverse modes. Therefore, our above pertur-
bative results can be used in the present boundary layer cal-
culations. With the Eqs.(26)–(30) and(31a) we can describe
the evolution of%lss,td as a function ofwlss,td by identify-
ing the coarse-grained quantities with the corresponding spa-
tial averages in Eqs.(17) and (22). This identification con-
stitutes the adiabatic approximation.

The stored-length release in the continuum limit is now
taken over from the right-hand side of Eq.(51),

D%lss,td =E
l−1

`

dq%0sqdfe2tq2f2Qlss,td2−q2g − 1g s66d

with Qlss,td the spatially weakly varying, adiabatic quantity.
There are two things to remark about Eq.(66). First, the use
of an integral instead of a sum is legitimate, if the integral is
not dominated by its lower bound. We infer from the length
scale separation Eq.(61) that this is the case if the integrand
is dominated by wave numbers close to the effective upper
cutoff Î2Ql. The wiggles on the scaleQ−1 are then the major
source for the release of stored length. Second, in the most
general case, we should allow for a weak spatial dependence
not only of Ql but of %0sqd as well by writing%0sq,sd. For
simplicity, we neglect such a spatial dependence in the initial
conditions and focus on statisticallyuniform initial excita-
tions.

Upon inserting Eq.(66) into Eq. (65) and inferring
Ql

2ss,td;Flss,td /2t from Eq. (29), we obtain a closed dif-
ferential equation forFl:

Fl9ss,td = ẑE
l−1

`

dq%0sqdfe2q2fFlss,td−q2tg − 1g. s67d

Specializing to the left end of a semi-infinite rod, this equa-
tion has to be solved for the boundary conditionsFl =0 (no

force) at the end andFl9=0 ats→` (conserved stored length
in the bulk).

The differential equation(67) is of a type frequently en-
countered in classical mechanics: By interpretingFl as the
position of a particlesmass;1d and s as the time variable,
Eq. (67) represents Newton’s equation,

Fl9ssd = − ]Fl
UsFld, s68d

for a particle moving in a potentialUsFld,

UsFld = ẑE
l−1

`

dq%0sqdFFl −
e2q2Fl − 1

2q2 e−2q4tG . s69d

For fixed timet, this potential isù shaped as a function of
Fl. The mechanical analog to our task is to find the instanton
solutionfl, which approaches the location of the maximum
of Usfld as s→`. Equation(68) can be integrated numeri-
cally for all times and arbitrary initial conditions%0sqd. Hav-
ing obtainedFlss,td, the tension profilewss,td is extracted
by taking the derivative

wlss,td = ]tFlss,td. s70d

Analytical progress is again possible for the generic relax-
ation scenarios that emerged from the discussion of the bulk
in Sec. IV. We therefore take the initial conditions to be of
the power-law form in Eq.(55). To simplify the notation we
will from now on drop the subscripts “l” for coarse-grained
quantities. As before, we consider type I and type II condi-
tions separately.

C. Exact similarity solutions

For type II initial conditions, i.e., Eq.(55) with 1,b,3,
one can find exact similarity solutions of Eq.(67). To this
end, we make the dynamic scaling ansatz

Fss,td = t1/2cbX s

lbstd
C s71d

for the integrated force, with the characteristic length

lbstd = ẑ−1/2L1−4dbtdb and db =
3 − b

8
. s72d

In Eq. (71) the bulk dynamics has been explicitly taken out
of the scaling form, and the definition oflb naturally results
from inserting Eq.(71) into Eq. (67) with the aim of elimi-
nating the parameter dependence. That the resulting differen-
tial equation forcbsjd is in particular time independent for
t! l4 is more easily seen after another variable transforma-
tion q→ q̃t−1/4,

cb9sjd =E
t1/4/l

`

dq̃q̃ −bfe2q̃2f−q̃2+cbsjdg − 1g. s73d

The boundary conditions arecbs0d=cb9sj→`d=0. Having
solved Eq.(73) for cbsjd, the tension is extracted by differ-
entiation,
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wss,td = ]tFlss,td = ]tFt1/2cbS s

lbstd
DG ;Îab

t
xbS s

lb
D .

s74d

To make contact with Eq.(53), the amplitudeÎab calculated
in Sec. IV D (see Fig. 7) was explicitly taken out of the
scaling function, so that the latter is normalized,xsj→`d
=1. The combinationÎabxbsjd then obeys

Îabxbsjd =
1

2
cbsjd −

3 − b

8
jcb8sjd. s75d

In Fig. 10 the numerical solutions are shown for different
values ofb. We have plotted the combinationÎabxbss/lbd
instead of the normalized scaling functionxb, because the
graphs of the latter cross each other for differentb, rendering
the figure too crowded. The slopexb8sjd at the origin thus has
a somewhat weaker dependence onb as suggested by Fig.
10. It is seen thatxbss/lbd saturates fors.lb, which estab-
lisheslb as the characteristic width of the boundary layer.
Figure 10 moreover shows that the tension profiles have a
nonzero curvature throughout the boundary layer. According
to Eq. (65) the release of tension and stored length is thus
spread over the whole boundary layer. Observe thatL1−4db

~1/Î%0 from Eq. (57) so that

lb ~ tdb/Î%0. s76d

Interestingly, the small parameterÎ%0=Ose1/2d appears in the
denominator so that the limitst→0 ande→0 do not inter-
change. This indicates that the boundary-layer phenomena
are not accessible by ordinary perturbation theory ine.

In the interesting case of thermal initial conditionssb
=2d the boundary layerlb=2std grows according to

l2std = ẑ −1/2L−1/2t1/8, s77d

where 2L /p is the persistence length. This particular relax-
ation scenario can be imagined to be the consequence of a
sudden temperature jump from finite to zero temperature.
Interestingly, the boundary-layer lengthl2std also governs
the thermodynamic propagation of tension through semiflex-

ible polymers; e.g., if a weak longitudinal force is suddenly
applied at one end[18], or if the polymer is exposed to a
shear flow[5].

D. Approximate similarity solutions

As explained in Sec. IV E, type I initial conditions with
roughnessb,1 and a large wave number cutoff

qN @ Q , t−1/4 s78d

satisfy the criterion Eq.(40). In this case we can use the
right-hand side of Eq.(44) to estimateD%lstd in Eq. (65),

ẑ −1F9 < %0sQdDQ exps2ad − %0, s79d

where we approximated

E
Î2Q

qN

dq%0sqd <
qN@QE

0

qN

dq%0sqd ; %0, s80d

as valid forb,1. Rather than in the absolute value ofF we
are interested in the ratio

ĉss,td ;
Fss,td
F`std

, s81d

whereF`std is the value ofF in the bulk,

F`std ; lim
s→`

Fss,td. s82d

By the definitions Eqs.(81) and (82) ĉss→` ,0d=1 and

ĉs0,td=0 at the free end to satisfy the boundary condition.
As in Sec. IV C, the vanishing of the left-hand side of Eq.
(79) in the bulk,

0 < %0sQ`dDQ` exps2a`d − %0, s83d

implies that the exponent

2a` ;
F`std2

2t
< const s84d

is constant in time up to logarithmic corrections. Now we
divide Eq.(79) by %0 and obtain, using Eqs.(81), (83), and
(84),

2
Îa`t

ẑ%0
ĉ9 = 1 −

%0sQdDQ expf2ag
%0sQ`dDQ` expf2a`g

.

Inserting the initial conditions Eq.(55) and using the defini-
tions of a, Q, andDQ from Sec. IV B, we arrive at

2
Îa`t

ẑ%0
ĉ9 = 1 − ĉ−s1+bd/2 expf2a`sĉ2 − 1dg. s85d

For givena, Eq. (85) is solved by the scaling ansatz

ĉss,td = ĉX s

lstd
C , s86d

where the width of the boundary layer is now given by

FIG. 10. Type II: Stress profile in the boundary layer, given by
the scaling functionxbss/lbstdd, Eq. (74). The caseb=2 corre-
sponds to thermalized initial conditions.
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lstd ; 2sẑ%0d−1/2sta`d1/4, s87d

and thus—in contrast to what we found under type II
conditions—is directly proportional toQ`

−1std. As the bound-
ary layer widthlb under type II conditions, it is inversely
proportional toÎ%0=Ose1/2d, which entails the same conclu-
sions as drawn after Eq.(76).

Inserting the scaling form Eq.(86) into Eq. (85) yields

1

2
ĉ9sjd = 1 − ĉ−s1+bd/2 expfa`sĉ2 − 1dg. s88d

After solving for ĉsjd the tension is found as before,

wss,td = ]tFss,td

=Îa`

t
FĉS s

l
D −

s

2l
ĉ8S s

l
DG

=Îa`

t
xX s

lstd
C , s89d

where the normalized scaling functionxsjd is given by

xsjd = ĉsjd −
1

2
jĉ8sjd. s90d

In Fig. 11 the scaling functionxsjd is shown for different
a`.1. With increasinga` the curves converge from below
to a piecewise linear form that consists of a linear boundary
layerxsjd=j for j,1 and a bulk areaxsjd=1 for j.1. This
limiting behavior is independent of the exponentb,1. Ac-
cording to Eq.(65) it corresponds to a completely straight-
ened boundary layer with the linearly growing tension being
fully due to the accumulating force from the viscous friction
against the solvent, and a buckled bulk regime with a spa-
tially constant pressure conserving its initially stored length.
From Eq. (65) it is moreover seen that the limita`→`
physically corresponds to a situation where the region of
stored-length release shrinks to a single point ats=lstd that

separates the buckled bulk from the relaxed boundary layer.
This is in accord with our conclusion at the end of Sec. IV
that for type I initial conditions tension decay can be identi-
fied with conformational relaxation(see Fig. 8).

From what was said there, we therefore could have
guessed the results of the preceding paragraph from an intui-
tive scaling argument that reverses the above line of argu-
ments. Starting from the very assumption that the rod con-
sists of totally straightened tails of lengthlstd that
dynamically constrain the bulk, one concludes that the bulk
pressurew`std drives the tails outwards at the velocityvi

needed to balance this pressure by the Stokes friction onto
the tails, i.e.,

w`std = ẑvilstd. s91d

On the other hand, the velocity of the boundary layer must
be equal to the stored-length release per unit of timevi

=%0]tl, which takes place in the small crossover region be-
tween bulk and boundary layer. Using the power law Eq.(4)
for the pressure within the(constrained) bulk with a prefac-
tor Îa` we obtain the closed differential equation

%0ẑl]tl = Îa`/t, s92d

which is solved by Eq.(87) for the lengthlstd.

E. Consistency

Since both lengthsQ`
−1std andlstd grow in time—under

type II conditions even with different exponents—one might
worry about the time domain of validity of the length scale
separation Eq.(61) underlying the above derivation. Consis-
tency of the adiabatic approach requires that the wavelength
Q`

−1=st /a`d1/4 that dominates the sum over all modes is
much smaller than the length over which the tension varies,
i.e., the width of the boundary layerlstd. For type II initial
conditions, we thus need

Q`stdlbstd = ab
1/4ẑ−1/2sL/t1/4db/2−1/2@ 1 s93d

For t→0 the inequality Eq.(93) is certainly true, because
b−1.0. The productQ`lb becomes comparable to one for
lbstd<L. However, this point of inconsistency cannot be
reached, since we had to assume in the discussion after Eq.
(55) that L!L in order to ensure the weakly bending limit.
Likewise, for type I initial conditions we need

Q`stdlstd = 2fa`/sẑ%0dg1/2 @ 1. s94d

Again, this generally holds in the weakly bending limit Eq.
(12).

The adiabatic approximation thus proves to be able to
describe the arclength-dependent tension relaxation in the
weakly bending limit. On the other hand, the consistency
conditions Eqs.(93) and (94) can be taken as another indi-
cation that the weakly bending limit is in fact a necessary
ingredient for the universality of the relaxation process and
in particular for the characteristic power-law relaxation Eq.
(4).

FIG. 11. Type I: Stress profile in the boundary layer, given by
the scaling functionx(s/lbstd), Eq. (89). The displayed curves cor-
respond tob=−1 anda`=5,10,15,20,25. Forincreasinga`@1,
xsjd approaches its limiting formxsj,1d=j andxsj.1d=1. The
asymptotic behavior is independent ofb,1.
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F. Terminal relaxation

Up to now, we have considered the growth of the bound-
ary layer in a rod that has a(formally) semi-infinite arclength
parameter space,s=0, . . . ,̀ , which is an idealization. How-
ever, the foregoing discussion obviously applies equally to a
free rod offinite lengthL for sufficiently short times: As long
as the size of the boundary layer is much smaller than the
total lengthL the presence of a second free end is irrelevant
to the boundary layer at the first end. The time where the
boundary layers span the whole rod marks the crossover to a
new behavior. For definiteness, we define the crossover time
t f by

lst fd ; L. s95d

Further contour relaxation proceeds essentially free of lateral
stress, because the tension is equilibrated everywhere with
the free ends fort@t f. The timet f can thus be identified as
the characteristic decay time for the tension. From Eqs.(26)
and (27) it is seen that after timet f all modes decay inde-
pendently exponentially throughout the whole rod,

%sq,t . t fd < %sq,t fde−q4st−tfd. s96d

Stored length is no longer conserved, and a mode with wave
numberq has thus decayed after timet<t f +q−4.

We recall from our discussion at the end of Sec. IV that
Eq. (96) corresponds to very different behavior of the overall
conformational relaxation for type I and type II initial con-
ditions, respectively. Consider again Fig. 8. In the type I
scenario, att f the stored length is concentrated in modes
with wavelengthsq−1<Q−1st fd, which (visibly) dominate
the contour undulations. Hence, we can conclude that it takes
a time of the order oft f to release the bulk of the initially
stored length%0 after the dynamic confinement ceases. In
other words, the rod straightens within a time of the order of
t f. This conforms with the earlier conclusions that tension
relaxation and stored-length release occur in parallel, so that
the conformation in the boundary layer is the straight ground
state.

On the contrary, for type II initial conditions the stored
length distribution in mode space hardly differs from the
initial condition Eq.(55), i.e. it is still strongly peaked at low
q and the total stored length has not changed appreciably. It
takes a timet=L4 until the contour undulations that carry
most of the stored length have relaxed. From the definition,
Eq. (95), of t f and the boundary layer growth law, Eq.(72),
we infer

L4/t f = s%0d−1/s2dbd = O„e−1/s2dbd
… @ 1. s97d

The conformational relaxation takes much longer thant f,
particularly asdb→3→0. This heralds the(trivial) limit of
instant tension equilibration forbù3. As already observed
for a confined rod at the end of Sec. IV as well as for the
boundary layers discussed in Sec. V C, the conformational
relaxation forb.1 lags behind the stress relaxation.

We finally comment on the relation to the ordinary per-
turbation approach of Sec. IV. For free ends, it would to
lowest order predict

wss,td = const = 0. s98d

At first sight this contradicts our intuitive understanding that
the bulk of a relaxing rod should be under pressure at least
for short times. However, fixing the length and time scalesL
and t of the problem whilee→0, the prediction of zero
tension is indeed recovered from the adiabatic approach via
the vanishing of the relaxation timet f in Eq. (95). This is
apparent from Eq.(97) for type I initial conditions and from
Eq. (87) for type II initial conditions. Thus for any fixed
given total lengthL and timet there exists anec such that the
prediction of the multiple-scale perturbation theory reduces
to that of the ordinary perturbation scheme fore!ec. How-
ever, the interesting short-time regimet!t fs« ,Ld is not ac-
cessible by ordinary perturbation theory. Upon fixinge andL
and considering smallt→0 (i.e., the situation just after re-
moving the confining walls that served to keep the tension
spatially constant), the decay of the bulk tension obviously
has to occur in an arbitrarily narrow boundary region. In
other words, the putativeOsed term f8 in Eq. (15b) has to
diverge on physical grounds, thus signaling the breakdown
of ordinary perturbation theory for open boundary conditions
in this limit.

VI. COMPARISON WITH NUMERICAL SIMULATIONS

In this section we want to point out how our results for the
stress relaxation manifest themselves in various observables
that have been monitored in numerical simulations. Golubo-
vic et al. [11] investigated the effect of a sudden temperature
jump on an initially straight rod of lengthl confined between
two walls (hinged ends). The frustration due to thermal ex-
pansion is modeled by a relative initial compression%0!1
of the backbone of the rod. The consequent initial pressurewi
drives the evolution of buckles with wave numberQi

=Îwi /2. After a transition period characterized by backbone
expansion most of the length%0l is stored in bending modes
with wave number close toQi rather than in backbone vibra-
tional modes. The backbone length appears to be almost con-
stant from there on. The rod relaxes in this second stage as if
it was incompressible with a pronounced peak in the initial
mode spectrum(prepared by the thermal expansion of the
rod). The scenario thus agrees with the assumptions of Sec.
IV C. Our analysis there explains why and how the peak
grows and sharpens in time. Asymptotically, we predict the
dominant wave number to evolve according toQ~t−1/4, as
observed in Ref.[11] by analyzing the tangent-tangent cor-
relation function. The fundamental power law Eq.(4) for the
tension derived in Sec. IV C is the basis for the power-law
time evolution of a number of other observables. For ex-
ample, the mean-square transverse displacement

w2 ; l−1E
0

l

dsr'
2 ss,td s99d

was observed to obeyw2=2%0t1/2~t1/2 [11] and interpreted
as an immediate consequence of the existence of a dominant
wavelength, which we established above for type I initial
conditions. That is, from the dominance ofQ together with
the conservation of stored length, one has
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w2 = 2o
n

%sqn,tdqn
−2 < 2%sQ,tdQ−2 = 2%0Q−2 , t1/2.

s100d

Analogous arguments can be used for other observed quan-
tities, such as the stored elastic energy or the dissipation rate,
etc. Moreover, as we have shown in Secs. IV B and IV C, the
cascading of stored length in mode space maintains and en-
hances the maximum in the mode spectrum asymptotically,
even if the initial mode spectrum has a(slowly) decaying
form. The validity of Eq.(100) and the related power-law
behavior of other observables thus also extend to this situa-
tion.

The simulations by Spakowitz and Wang[12] considered
the same setup as in Ref.[11] but with free boundary condi-
tions. In addition to a higher-order effect guiding the evolu-
tion of helical modes, the same power laws are found for the
dominant wave number and the evolution of transverse dis-
placements, respectively. This becomes more easily compre-
hensible from our boundary-layer calculations, which show
that most of the rod should indeed behave as if it were lon-
gitudinally confined as long as the boundary layer does not
span the whole filament, e.g., fort!t f. Additionally, as a
measure for the longitudinal expansion Spakowitz and Wang
[12] proposed a longitudinal radius of gyrationRi

G as the
largest eigenvalue of a gyration tensor. In our terms, this
quantity can be identified with

RGi
2 std ;

1

L
E

0

L

dsfzCM − s+ r iss,tdg2 s101d

for a rod with a time-independent longitudinal center of mass
coordinate zCM=sCM−r issCMd lying approximately at the
center of the rod,

zCM + r is0d < L/2. s102d

Using the arguments developed above, the time derivative
]t RGi

2 std is in the limit t→0 given by

RGi]tRGi =
1

L
E

0

L

dsfzCM − s+ r igt=0]t r i

< E
0

L/2

ds]tr i s103ad

=E
0

L/2

dsE
0

s

ds8]t%ss8,td s103bd

=ẑ −1w` ~ t−1/2. s103cd

The first approximation Eq.(103a) follows from Eq. (102)
and from the fact that for short times]t r i is finite (to leading
order) only close to the ends,s=0 ands=L. Equation(103c)
holds because of]t%=w9 / ẑ after differentiating Eq.(64) with
respect to time. Integrating Eq.(103) in time and observing
Ri

Gs0d<L / s2Î3d one gets the algebraic growth law

dRi
Gstd ; Ri

Gstd − Ri
Gs0d ~ t1/2, s104d

which is indeed empirically found to hold with high accuracy
over a broad time window[12]. Note, however, that accord-
ing to Eq.(103) this (initial) variation of the radius of gyra-
tion measures the time integral of the bulk tension rather
than the growth of the boundary layer. It thus provides a
practical direct measure ofFstd, but is not suitable to moni-
tor the conformational relaxation.

Access to the latter can be gained by probing the end-to-
end distance

Ri = L − r isLd + r is0d s105d

instead. Its temporal changedRistd;Ristd−Ris0d is obvi-
ously directly due to stored-length release. Under type I con-
ditions, where stored-length release and tension decay go
hand in hand and the boundary layer is essentially straight,
the released length is nothing but the total stored length that
was initially contained in the boundary layer, i.e.,

dRistd < %0lstd ~ Î%0t1/4. s106d

Rods with type II initial conditions behave differently.
Again, stored-length release does not occur in the bulk.
However, the stored length in the boundary layer is released
much more slowly than the boundary layer grows, as dis-
cussed in Sec. V F. Not all of the initially stored length but
only some fractionD%* sq,td has been released after timet.
The latter can be estimated from Eq.(96), since the relax-
ation within the boundary layer is essentially tension-free:

D% * sq,td =E
L−1

`

dq%0sqdse−q4t − 1d ,
t1/4!L

L1−btsb−1d/4.

s107d

Asymptotically we can thus write

dRistd < D%b
* stdlbstd ~ Î%0tsb−1d/4+db, s108d

for short timest!t f. In the last step we usedL1−b~%0 from
Eq. (57). For t<t f the growth of the boundary layer satu-
rates atl.L, so that for long timest@t f

dRistd < D%b
* stdL ~ %0tsb−1d/4. s109d

In summary, for type II initial conditions

dRistd ~ 5Î%0tgb
,

, gb
, =

b + 1

8
st ! t fd,

%0tgb
.

, gb
. =

b − 1

4
st @ t fd.6 s110d

In particular, we note that an initially thermalized rod first
expands according todRi ~t 3/8 and eventually asdRi ~t1/4.
The exponentsgb

, andgb
., which obeygb

,=gb
.+d, are dis-

played in Fig. 12 together withdb for comparison.
The initial growth laws Eqs.(106) and (108) including

prefactors can also be derived more rigorously from the scal-
ing forms for the integrated tension derived in Secs. V C and
V D For type I initial conditionsD%ss,td /%0 is given by the
right-hand side of Eq.(85); hence
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dRistd = 2E
0

`

dsD%ss,td

= 2E
0

`

ds%0
„1 − ĉ−s1+bd/2 exph2a`fĉ2ss,td − 1gj…

= lstd%0E
0

`

dj„1 − ĉ−s1+bd/2 exph2a`fĉ2sjd − 1gj…

~ Î%0t1/4. s111d

The exact prefactor can be obtained as a function of the
appropriate scaling function by evaluating the integral nu-
merically. For type II initial conditions one finds

dRistd = 2E
0

`

dsD%ss,td

= 2E
0

`

dsL1−bE
0

`

dqq−bfe2q2fFss,td−q2tg − 1g

= L1−bt sb−1d/4lbstdE
0

`

dj2E
0

`

dqq−bfe2q2fcsjd−q2g − 1g

~ Î%0tgb, s112d

which also gives an explicit expression for the prefactor in
terms of the scaling functioncsjd.

We finally comment on a possible problem that could
arise because of the “microscopic” nature ofdRi. Note that,
in contrast todRi

G, it is also sensitive to microscopic details
of the relaxation and the initial conditions, since it contains
contributions from Fourier modes beyond those correspond-
ing to the coarse-graining lengthl. In particular, the longitu-
dinal projection of transverse fluctuations near the ends
could possibly mix into the genuinely longitudinal dynamics,
thereby affecting the observed time dependence. This effect
plays indeed an important role for the longitudinal fluctua-
tions and linear response of stiff polymers pulled at their
ends[2,18]. The situation is somewhat more fortunate in the

present case, since one can show the “microscopic” contri-
butions to obey the same power-law dynamics but with a
prefactor of lower order ine.

Altogether, it appears that evidence for the bulk relaxation
of type I initial conditions, i.e., in the regime of mode-space
localization corresponding tob,1, can be found in existing
simulations. The more complicated intermediate asymptotic
regime for type II initial conditions and our predictions for
the boundary-layer dynamics represent interesting additional
features, which could be verified in simulations by probing
the growth of the end-to-end distance. Finally, we anticipate
a result of ongoing work[15] in which we include thermal
noise in our considerations. The power laws(not the prefac-
tors) derived here for a deterministic rod withb=2 turn out
to describe the physics of a semiflexible polymer after a sud-
den change in persistence length.(The latter may be experi-
mentally realized by addition of chemicals rather than by a
sudden temperature quench.) Thus, semiflexible polymers
may lend themselves to an experimental investigation of our
scaling predictions for the particular caseb=2. After this
work was completed, we learned about related work by
Bhobot-Ravivet al. [22] for DNA.

VII. CONCLUSIONS AND OUTLOOK

We have developed and applied in Sec. V and the Appen-
dix an adiabatic method to calculate the overdamped hetero-
geneous stress relaxation in a multiply but weakly buckled
rod. The possible generic relaxation scenarios could conve-
niently be characterized in terms of an exponentb character-
izing the roughness of the initial contour. The coarse-grained
pressurewlss,td along the rod backbone could be cast into
the universal scaling form

wlss,td =Îab

t
xbX s

lbstd
C , s113d

with a boundary-layer width

lbstd , tdb, s114d

and a normalized monotone scaling functionxbsjd,

xbsendd = 0, xbsbulkd = 1.

The latter was calculated numerically and displayed in Figs.
10 and 11 for the two fundamentally different casesb,1
(type I) and 1,b,3 (type II), respectively. The amplitude
Îab of the power-law decay of the tension in the bulk de-
pends on the initial conditions as summarized by Fig. 7. The
exponentdb depicted in Fig. 12 characterizes the growth of
the width of the boundary layer over which the tension con-
tinuously decays from its bulk valueÎab /t to zero. The
particular case of thermal initial conditions corresponds to
Îab=2<0.386 andlb=2=1/8. For type I initial conditions
the dynamics is governed by a unique characteristic dynamic
length scaleQ−1. Tension propagation coincides with contour
relaxation. The contour has relaxed by the timet f when the
tension has equilibrated throughout the rod. On the contrary,
for type II initial conditions, the boundary-layer width con-
stitutes an additional dynamic length scale that behaves dif-

FIG. 12. The exponentsgb
, andgb

. (grey) determine the growth
dRi ~tgb for the end-to-end distance on shortst!t fd and long
timesst@t fd, respectively. The exponentdb=gb

,−gb
. (black) char-

acterizes the growthlb,tdb of the width of the boundary layer.

OVERDAMPED STRESS RELAXATION IN BUCKLED RODS PHYSICAL REVIEW E70, 031802(2004)

031802-17



ferently fromQ−1. Tension relaxation precedes contour relax-
ation and most of the contour relaxation occurs under
negligible tension.

From these central results we derived corresponding
power laws for a number of observables that seem well
suited to test our predictions in simulations. In particular, we
showed that the longitudinal radius of gyrationRi

G is suitable
to directly probe the(universal) tension relaxation in the
bulk, i.e., the prefactor in Eq.(113). The more complex
boundary-layer growth Eq.(114), which sensitively depends
on the type of initial conditions, was shown to be reflected in
the conformational dynamics. It can be accessed by a mea-
surement of the longitudinal end-to-end distanceRi, which
was predicted to exhibit the intriguing dynamical crossover
behavior summarized in Eq.(110).

Following Spakowitz and Wang[12], an interesting route
for future theoretical investigations could be to allow for
higher order contributions to the harmonic wormlike-chain
Hamiltonian in Eq.(1) to analyze the intriguing nonlinear
phenomenon of helix formation and coarsening.

With minor modifications the adiabatic method developed
here can be used to determine stress profiles for nondeter-
ministic, thermal dynamics(i.e., for semiflexible polymers in
various situations of external driving), and will thus be help-
ful in establishing a unified description of tension propaga-
tion in stiff polymers. In fact, even the athermal case consid-
ered here can for the special choiceb=2 be interpreted as a
special nonequilibrium thermodynamics problem: the free
contour relaxation after a sudden temperature jump in the
limit of vanishing final temperature. The above derived scal-
ing behavior(but not the amplitudes) can be shown to gen-
eralize to the case that the final temperature is finite[15].
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APPENDIX: METHOD OF MULTIPLE SCALES

Given the separation of the length scalesQ−1 and l ob-
served in Sec. V A, it is natural to apply the method of mul-
tiple scales[21] to find an approximate closed equation for
the slow variation of the tensionwss,td over the length scale
l that is independent of the detailed “microscopic” fluctua-
tions on the scaleQ−1. To this end, we introduce rapidly and
a slowly varying arclength coordinates,x;s and y;sea,
respectively, where the exponenta.0 will be fixed later.
Any function gssd depending on the arclengths is now con-
sidered to depend on both variablesgssd→gsx,yd, wherex
andy are treated as independent. The original arclength de-
rivative then becomes

u]sut ; u]xut,y + eau]yut,x. sA1d

The dynamic variablesr' and f =kw in the equations of
motion Eqs.(15) are assumed to have a uniform power ex-
pansion(the expansion coefficients in each order have to be
bounded[21]) in terms of the small parametere,

r ' = e1/2h0 + ose1/2d,

w = w0 + ew1 + osed. sA2d

Eliminating the(dependent) coordinater i via the local con-
straint Eq.(13) to the required order and inserting the power
expansions Eq.(A2) in the equations of motion yields

0 = e1/2f]th0 + ]x
4h0 + ]xsw0]xh0dg + ose1/2d, sA3ad

0 = ]x
2w0 + ea2]x]yw0 + e2a]y

2w0 + ef]x
2w1 − X0sx,ydg

+ ose;e2ad. sA3bd

By

X0sx,yd =
ẑ

2
]ts]xh0d2 +

1

2
]x

2fw0s]xh0d2g +
1

2
]x

4s]xh0d2

− s1 − ẑd]xfs]xh0ds]th0dg,

we have summarized terms nonlinear inh0. TheOs1d part of
Eq. (A3b) together with the requirement ofw0 being bounded
for largex imply that

w0sx,yd = ŵ0syd sA4d

is independent ofx, so that theOs1d andOsead terms of Eq.
(A3b) vanish. The leading order in this equation could there-
fore be eitherOse2ad or Osed. With Eq. (A4) we can solve
the Ose1/2d part of Eq.(A3a) for h0sx,yd in terms of Fourier
modes of the variablex along the lines of Sec. IV B and use
the result to evaluateX0sx,yd. It then turns out that the first
term inX0 implies thatw1 would have to grow without bound
with increasing system size(secular term), if the Osed terms
alone were required to cancel each other. However, the non-
linear term can also be balanced by theOse2ad term after
choosinga=1/2; i.e., the exponenta is fixed such that the
expansion coefficientw1 remains bounded.4 The equation
fixing w1 then reads

]x
2w1sx,yd + ]y

2ŵ0syd = X0sx,yd. sA5d

The balance of the secular terms implies the balance of thex
averages of their derivatives that appear in Eq.(A5), wherex
averaging is defined by

kgsx,ydlxsyd = lim
l→`
E

0

l dx

l
gsx,yd. sA6d

Note thatx averages of terms that are total derivatives of
bounded(nonsecular) quantities with respect tox all vanish
upon formally taking the coarse-graining lengthl →` in Eq.
(A6), so that we are left with

4The small parameterea=e1/2 appearing here is the same as in the
length scale separation Eq.(60) observed in Sec. V A.
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]y
2ŵ0syd =

ẑ

2
k]ts]xh0d2lxsyd. sA7d

For the finite rod under consideration, the limitl →` is not
to be taken literally though. Rather, the average in Eq.(A6)
is required to become independent ofl to leading order ine
for l much smaller than the system size. For the quantities of

interest this was already established in Sec. V B. Therfore,
we can identify Eq.(A7) with the coarse-grained equation
Eq. (65). Relating corresponding quantities,ŵ0syd which de-
pends only on the slow variabley is recognized as the former
coarse-grained tensionwlssd, while thex-averaged expansion
coefficientkw1sx,ydlx=ŵ1syd corresponds to the time deriva-
tive ]telssd of the coarse-grained stored length.
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